Instructors

Anand D. Sarwate is an Assistant Professor in the Department of Electrical and Computer Engineering at Rutgers, the State University of New Jersey. He received a B.S. degree in Electrical Science and Engineering and a B.S. degree in Mathematics from MIT in 2002, an M.S. in Electrical Engineering from UC Berkeley in 2005 and a PhD in Electrical Engineering from UC Berkeley in 2008. From 2008-2011 he was a postdoctoral researcher at the Information Theory and Applications Center at UC San Diego and from 2011-2013 he was a Research Assistant Professor at the Toyota Technological Institute at Chicago, a philanthropically endowed academic computer science institute located on the University of Chicago campus. He was the Online Editor of the IEEE Information Theory Society (2015-2018) and an Associate Editor for the IEEE Transactions on Signal and Information Processing over Networks (2015-2018). Prof. Sarwate received the NSF CAREER award in 2015 and the A. Walter Tyson Assistant Professor Award from the Rutgers School of Engineering in 2018. His interests are in information theory, machine learning, and signal processing, with applications to distributed systems, privacy and security, and biomedical research. He is the author of several papers on differential privacy and differentially private machine learning, and has worked on applying differential privacy in biomedical applications. He has also given tutorial lectures on differential privacy at the Workshop on Information Forensics and Security and the Neural Information Processing Systems conference.

Course Objectives

The primary objective of this course is to get participants familiar with the basic conceptual framework of differential privacy, when and where it is applicable, basic techniques for differentially private data analysis, and adapting statistical methodologies to data which has been published under differential privacy. The instructor will motivate the need for rigorous privacy definitions before covering basic definitions, mechanisms such as output perturbation and the exponential mechanism, and applications in statistical analyses. A series of application vignettes with code will illustrate and ground each of the concepts in practical application.
Participants should be prepared to work in groups to design differentially private data publishing methods based on application vignettes.

Learning Outcomes:
After this course, participants should be able to:

- Explain privacy risks from inference attacks.
 - Understand and explain privacy risks from publishing microdata or analyses.
 - Explain how reidentification & reconstruction attacks work.
 - Explain the risks posed by membership attacks & other attacks.
- Interpret the definition of pure and approximate differential privacy.
 - Give simple examples of differentially private strategies.
 - Explain how many statistical disclosure mechanisms fail to provide privacy.
 - Understand the scope of tasks to which differential privacy is suited.
- Apply basic differentially private mechanisms for common statistical tasks.
 - Compute the global sensitivity of basic summary statistics.
 - Apply the Laplace and Gaussian mechanisms to basic operations.
 - Apply the exponential mechanism for differentially private selection.

Who Should Attend
Statisticians and statistical analysts in government, universities, business, and nonprofit organizations interested in understanding how differentially private data analysis works and how to approach differentially private data published through instruments such as the 2020 United States Census.

Introductory course work in statistical methods is strongly recommended. Participants should be familiar with descriptive statistics, standard distributions (normal, Laplace, geometric, binomial, etc.), chance selection, expected values, and basic probability calculations. Familiarity with statistical testing (Type I/Type II errors) will also be very helpful.

Course Schedule:
The course will be in an Online Format from Sept 20 to Oct 1, Participants would have online access to the course packet (slides) and to the recorded lectures where is presented in 4 sections Monday - Thursday. (We would have the entire week 1 recordings available online and participants could watch them at their own pace, with a recommended viewing of 1 1/2 hours per day for each of the four days).
Friday 09/24 and 10/01 would be a 1:30 hour live group online discussion with the instructors **(TIME TBD)**. Week 2 follows the same schedule as Week 1, (recorded lectures M-Th, live online group meeting Friday).