Syllabus

Introduction to Record Linkage with Big Data Applications
2 credits/4 ECTS

Manfred Antoni, PhD
Prof. Stefan Bender
Christian Borgs, PhD
Prof. Joseph W. Sakshaug, PhD

Video lecture by
Manfred Antoni, PhD
Prof. Stefan Bender
Christian Borgs, PhD
Prof. Joseph W. Sakshaug, PhD

June 02 – July 21, 2021

Short Course Description

The course will address methods to combine data on given entities (people, households, firms etc.) that are stored in different data sources. By showing the strengths of these methods and by showing how each of them are performed in practice using R, the course will demonstrate the various benefits of record linkage. Participants will also learn about potential challenges that record linkage projects may face.

Course Objectives

By the end of the course, students will...

- be familiar with a host of record linkage applications from different countries or jurisdictions that link a variety of data sources and use different types of linkage
- know how to improve the quality of linkage identifiers by applying pre-processing routines
- be familiar with different methods of increasing the efficiency of record linkage
- be able to understand, select and apply appropriate record linkage methods (e.g., deterministic and probabilistic linkage)
- be able to evaluate the success of data linkage
- be able to perform each step in the record linkage process using the R software
Prerequisites

Students should have knowledge of basic statistical concepts. They need to have an intermediate knowledge of R. Familiarity with regular expressions, the R packages ggplot2 and tidyverse is useful but not required.

Class Structure and Course Concept

This is an online course, using a flipped classroom design. It covers the same material and content as an on-site course but runs differently. In this course, you are responsible for watching video-recorded lectures and reading the required literature for each unit prior to participating in mandatory weekly one-hour online meetings where students have the chance to discuss the materials from a unit with the instructor.

Although this is an online course where students have more freedom in when they engage with the course materials, students are expected to spend the same amount of time overall on all activities in the course – including preparatory activities (readings, studying), in-class-activities (watching videos, participating in online meetings), and follow-up activities (working on assignments and answering quizzes) – as in an on-site course. As a rule of thumb, you can expect to spend approximately 3h/week on in-class-activities and 9 hours per week on out-of-class activities (preparing for class, readings, assignments, studying for quizzes). Therefore, the workload in all courses will be approximately 12h/week. This is a 2-credits/4-ECTS course that runs for 8 weeks. Please note that the actual workload will depend on your personal knowledge.

Mandatory Weekly Online Meetings

Wednesday, 1:00 PM EST/7:00 PM CET, starting on June 2

Meetings will be held online through Zoom. Follow the link to the meeting sessions on the course website on http://mannheim.instructure.com/. If video participation via Internet is not possible, arrangements can be made for students to dial in and join the meetings via telephone.

In preparation for the weekly online meetings, students are expected to watch the lecture videos and read the assigned literature before the start of the meeting. In addition, students are encouraged to post questions about the materials covered in the videos and readings of the week in the forum before the meetings (no later than Tuesday, 1:00 PM EST/7:00 PM CET, i.e. 24 hours before each online meeting; questions not posted in time will not be counted for the grading and may not be answered in the online meeting).

Students have the opportunity to use the Conferences feature in Canvas to connect with peers outside the scheduled weekly online meetings (e.g., for study groups). Students are not required to use Canvas Conferences and can of course use other online meeting platforms such as Google Hangouts, Skype or Microsoft Teams.
Grading

Grading will be based on:

- 3 online quizzes (worth 10% each, 30% in total)
- Participation in the weekly online meetings (20% of grade): engagement in discussions during the meetings and submission of questions in the weekly discussion forum on the course website (deadline: Tuesday, 1:00 PM EST/7:00 PM CET, i.e. 24 hours before each online meeting)
- 3 homework assignments (worth 50% in total)

A+ 100 - 97
A 96 - 93
A- 92 - 90
B+ 89 - 87
B 86 - 83
B- 82 - 80
Etc.

The grading scale is a base scale recommended by the MDM. Variations for grading on a scale are at the discretion of the instructor.

Dates of when assignments will be due are indicated in the syllabus. Extensions will be granted sparingly and only with prior arrangement with the instructors.

Technical Equipment Needs

The learning experience in this course will mainly rely on the online interaction between the students and the instructors during the weekly online meetings. Therefore, we encourage all students in this course to use a web camera and a headset. Decent quality headsets and web cams are available for less than $20 each. We ask students to refrain from using built-in web cams and speakers on their desktops or laptops. We know from our experience in previous online courses that this will reduce the quality of video and audio transmission and therefore will decrease the overall learning experience for all students in the course. In addition, we suggest that students use a wire connection (LAN), if available, when connecting to the online meetings. Wireless connections (WLAN) are usually less stable and might be dropped.

Mannheim Business School would also like to officially inform you that, in order to facilitate your participation in this course, your personal data will be processed by and on systems run by MBS and our subcontractors. You can find detailed information in our privacy policy and information for data subjects here.

Long Course Description

The demand for using different data sets in a “combined way” to analyze research questions is increasing. This is where record linkage comes into play as the common technique to integrate separate data sets.
The course will provide an introduction to record linkage: it will address methods to combine data on given entities (people, households, firms etc.) that are stored in different data sources. By showing the strengths of these methods and by providing numerous practical examples ranging from linked survey and administrative data to Big Data applications, the course will demonstrate the various benefits of record linkage. Participants will also learn about potential challenges record linkage projects may face.

The schedule of the course will follow a prototypical record linkage process:
- the need for common identifiers (e.g., names, addresses, birth dates) and the importance of assuring high data quality even during the planning phase of each project,
- preparation of these identifiers before the actual linkage,
- increasing the efficiency of the matching step (different blocking techniques),
- alternative ways of conducting the comparison step, namely rule-based, distance-based and probabilistic record linkage,
- as data protection requirements are an important issue in many applications, methods of privacy preserving record linkage are discussed,
- evaluation and visualization of different quality aspects of the linkage result.

Numerous practical examples will give participants an opportunity to create and discuss their own ideas for promising record linkage projects. By the end of the course participants will be able to assess the feasibility of, plan and manage record linkage projects as well as to perform each step along the linkage process using the R software.

Readings

Primary Readings

Required and Recommended Readings
List of required and recommended readings for each class are provided below for each specific unit.

Academic Conduct
Clear definitions of the forms of academic misconduct, including cheating and plagiarism, as well as information about disciplinary sanctions for academic misconduct may be found at

https://www.president.umd.edu/sites/president.umd.edu/files/documents/policies/III-100A.pdf (University of Maryland) and

Knowledge of these rules is the responsibility of the student and ignorance of them does not excuse misconduct. The student is expected to be familiar with these guidelines before submitting any written work or taking any exams in this course. Lack of familiarity with these rules in no way constitutes an excuse for acts of misconduct. Charges of plagiarism and other forms of academic misconduct will be dealt with very seriously and may result in oral or written reprimands, a lower or failing grade on the assignment, a lower or failing grade for the course, suspension, and/or, in some cases, expulsion from the university.

Accommodations for Students with Disabilities

In order to receive services, students at the University of Maryland must contact the Accessibility & Disability Service (ADS) office to register in person for services. Please call the office to set up an appointment to register with an ADS counselor. Contact the ADS office at 301.314.7682; https://www.counseling.umd.edu/ads.

Students at the University of Mannheim should contact the Commissioner and Counsellor for Disabled Students and Students with Chronic Illnesses at https://www.uni-mannheim.de/en/academics/advice-and-services/advice-for-students-with-disabilities-or-chronic-illnesses.

Course Evaluation

In an effort to improve the learning experience for students in our online courses, students will be invited to participate in an online course evaluation at the end of the course (in addition to the standard university evaluation survey). Participation is entirely voluntary and highly appreciated.
Week 1: Introducing record linkage in the age of Big Data

Video lecture (Bender, Sakshaug): available online, Wednesday, May 26, 2021

Online meeting (Antoni, Bender, Borgs, Sakshaug): Wednesday, June 2, 2021, 1:00 PM EST/7:00 PM CET

Required Readings:
Christen (2012), chapters 1 (sections 1.1-1.3) and 2.

Recommended Readings:

Topics:

- Introduction
- What is RL? What is it not?
- Privacy issues
- Consent
- Process of record linkage

Week 2: Collecting and pre-processing linkage identifiers & blocking techniques

Video lecture (Antoni): available online, Wednesday, June 2, 2021

Online meeting (Antoni): Wednesday, June 9, 2021, 1:00 PM EST/7:00 PM CET

Online quiz 1: due Sunday, June 13, 2021, 1:00 PM EST/7:00 PM CET
Required Readings:
Christen (2012), chapters 3 (sections 3.1-3.5 and 3.8) and 4 (sections 4.1-4.5, 4.8 and 4.13).

Recommended Readings:

Topics:
- Identifiers: Which are useful? How to ensure their quality?
- Importance and limitations of preprocessing
- Excursion: regular expressions
- Blocking

Week 3: Data preprocessing and core concepts of data quality for linking

Video lecture (Antoni, Borgs): available online, Wednesday, June 9, 2021

Online meeting (Antoni, Borgs): Wednesday, June 16, 2021, 1:00 PM EST/7:00 PM CET

Homework assignment 1: available online, Wednesday, June 9, 2021; due Sunday, June 20, 2021, 1:00 PM EST/7:00 PM CET

Recommended Readings:

Wickham, H., Grolemund, G. (2017): R for Data Science. Bejing: O'Reilly. Chapter 11. https://r4ds.had.co.nz

Topics:
- Basics of dealing with strings in R
- Potential pitfalls with character encoding
- Regular expressions
- Lookup tables
Week 4: Comparison and classification of record pairs

Video lecture (Antoni): available online, Wednesday, June 16, 2021

Online meeting (Antoni): Wednesday, June 23, 2021, 1:00 PM EST/7:00 PM CET

Online quiz 2: due Sunday, June 27, 2021, 1:00 PM EST/7:00 PM CET

Required Readings:
Christen (2012), chapters 5 (sections 5.1-5.5, 5.9 and 5.17), 6 (sections 6.1-6.3) and 8 (sections 8.1-8.3).

Recommended Readings:

Topics:
- Distance-based linkage
- Probabilistic record linkage
- Privacy-preserving record linkage

Week 5: Probabilistic record linkage and blocking (application)

Video lecture (Antoni, Borgs): available online, Wednesday, June 23, 2021

Online meeting (Antoni, Borgs): Wednesday, June 30, 2021, 1:00 PM EST/7:00 PM CET

Homework assignment 2: available online, Wednesday, June 23, 2021; due Sunday, July 4, 2021, 1:00 PM EST/7:00 PM CET

Topics:
- Implementation of blocking
- Comparison of record pairs
- Classification of matches
Week 6: Advanced topics, software options and literature review

Video lecture (Antoni, Bender, Sakshaug): available online, Wednesday, June 30, 2021

Online meeting (Antoni, Bender, Sakshaug): Wednesday, July 7, 2021, 1:00 PM EST/7:00 PM CET

Online quiz 3: due Sunday, July 11, 2021, 1:00 PM EST/7:00 PM CET

Required Readings:
Christen (2012), chapter 7 (sections 7.1-7.3).

Recommended Readings:

Topics:
- Evaluation
- Advanced Classification Techniques
- Software options
- Literature overview
- Record linkage in the age of Big Data – outlook

Week 7: Privacy-preserving record linkage using R

Video lecture (Antoni, Borgs): available online, Wednesday, July 7, 2021

Online meeting (Antoni, Borgs): Wednesday, July 14, 2021, 1:00 PM EST/7:00 PM CET

Required Readings:

Topics:

- Encryption of linkage identifiers using Bloom filters
- Blocking on Bloom filters using Multibit-Trees
- Comparison and classification

Week 8: Evaluation and visualization of linkage quality

Video lecture (Antoni, Borgs): available online, Wednesday, July 14, 2021

Online meeting (Antoni, Borgs): Wednesday, July 21, 2021, 1:00 PM EST/7:00 PM CET

Homework assignment 3: available online, Wednesday, July 14, 2021; due Sunday, July 25, 2021, 1:00 PM EST/7:00 PM CET

Recommended Readings:

Topics:

- Calculating measures of linkage quality
- Visualization of linkage quality