Syllabus

Introduction to Real World Data Management
2 credits/4 ECTS

Alexandru Cernat
Video lecture by Alexandru Cernat
June 7 – August 2, 2021

Short Course Description

Data is omnipresent in the contemporary world, coming in different shapes and sizes: from survey data to found data. In order to make use of such data through analysis it is necessary first to import and clean it. This is often one of the most time consuming and difficult parts of data analysis. In this course you will learn both the conceptual steps needed in preparing data for analysis as well as the practical skills to do this. The course will cover all the essential skills needed to prepare data be it survey data, administrative data or found data.

Course Objectives

By the end of the course, students will…

- Understand the stages involved in preparing data for analysis
- Understand the concept of tidy data
- Understand the basics of using R
- Know how to write their own functions and loop over them
- Know how to import and export data
- Know how to clean data in R
- Know how to merge data
- Know how to manipulate textual data
- Know how to manipulate date/time data
- Know how to use tables and graphs to explore data

Prerequisites

Basic knowledge of R. Prior experience with working with data.

Class Structure and Course Concept

This is an online course using a flipped classroom design. It covers the same material and content as an on-site course but runs differently. In this course, you are responsible for watching video-recorded lectures and reading the required literature for each unit prior to participating in mandatory weekly one-hour online meetings where students have the chance to discuss the materials from a unit with the instructor.
Although this is an online course where students have more freedom in when they engage with the course materials, students are expected to spend the same amount of time overall on all activities in the course – including preparatory activities (readings, studying), in-class-activities (watching prerecorded videos, attending the live online meetings), and follow-up activities (working on assignments and exams) – as in an on-site course. As a rule of thumb you can expect to spend approximately 3h/week on in-class-activities and 9 hours per week on out-of-class activities (preparing for class, readings, assignments, projects, studying for quizzes and exams). Therefore, the workload in all courses will be approximately 12h/week. Please note that the actual workload will depend on your personal knowledge.

Mandatory Weekly Online Meetings

Mondays, 3:00 PM EDT/9:00 PM CEST, starting June 7, 2021

Meetings will be held online through Zoom. Follow the link to the meeting sessions on the course website on mannheim.instructure.com. If video participation via Internet is not possible, arrangements can be made for students to dial in and join the meetings via telephone.

In preparation for the weekly online meetings, students are expected to watch the lecture videos and read the assigned literature before the start of the meeting. In addition, students are encouraged to post questions about the materials covered in the videos and readings of the week in the forum before the meetings (deadline for posting questions is Sundays, 3:00 PM EDT/9:00 PM CEST).

Students have the opportunity to use the Conferences feature in Canvas to connect with peers outside the scheduled weekly online meetings (e.g., for study groups). Students are not required to use Canvas Conferences and can of course use other online meeting platforms such as Google Hangouts, Skype or Microsoft Teams.

Grading

Grading will be based on:

- 4 fortnightly homework assignments (worth 60% total)
- Participation in discussion during the weekly online meetings and submission of questions to the forum (deadline: Sunday, 3:00 PM EDT/9:00 PM CEST) (demonstrating understanding of the required readings and video lectures (10% of grade)
- A final project (30% of grade)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>100 - 97</td>
</tr>
<tr>
<td>A</td>
<td>96 - 93</td>
</tr>
<tr>
<td>A-</td>
<td>92 - 90</td>
</tr>
<tr>
<td>B+</td>
<td>89 - 87</td>
</tr>
<tr>
<td>B</td>
<td>86 - 83</td>
</tr>
<tr>
<td>B-</td>
<td>82 - 80</td>
</tr>
<tr>
<td>Etc.</td>
<td></td>
</tr>
</tbody>
</table>

The grading scale is a base scale recommended by the MDM. Variations for grading on a scale are at the discretion of the instructor.
The final grade will be communicated under the assignment “Final Grade” in the Canvas course. Please note that the letter grade written in parentheses in Canvas is the correct final grade. The point-grade displayed alongside the letter grade is irrelevant and can be ignored. Dates of when assignment will be due are indicated in the syllabus. Extensions will be granted sparingly and are at the instructor's discretion.

Technical Equipment Needs

The learning experience in this course will mainly rely on the online interaction between the students and the instructors during the weekly online meetings. Therefore, we encourage all students in this course to use a web camera and a headset. Decent quality headsets and web cams are available for less than $20 each. We ask students to refrain from using built-in web cams and speakers on their desktops or laptops. We know from our experience in previous online courses that this will reduce the quality of video and audio transmission and therefore will decrease the overall learning experience for all students in the course. In addition, we suggest that students use a wire connection (LAN), if available, when connecting to the online meetings. Wireless connections (WLAN) are usually less stable and might be dropped.

Mannheim Business School would also like to officially inform you that, in order to facilitate your participation in this course, your personal data will be processed by and on systems run by MBS and our subcontractors. You can find detailed information in our privacy policy and information for data subjects here.

Long Course Description

Data is ubiquitous in the contemporary world. It comes in a variety of shapes and sizes: surveys, administrative data or found data. Often we want to use this data to bring insights by applying different types of statistical analyses. Unfortunately, most often the data we are interested in do not come prepared for the analysis we want to carry out. This can be due to its format, due to missing cases or just because it captures information in a way that we cannot use in our analysis. In this course you will learn both the conceptual and practical aspects of importing and manipulating data in order to be used both for exploratory and more advanced statistical analyses.

The course will first cover the main concepts needed to prepare real world data using R. We will start by understanding the steps we need to follow in order to prepare data for analysis. Then we will develop the core skills in R such as working with the different types of objects, such as data frames. We will then cover how to use techniques to make our work with data more efficient, for example by using loops or by applying functions over variables or data frames. After covering the main concepts and skills we will concentrate on data management. Here we will discuss how to manipulate data such as selecting cases/variables, recoding variables or reshaping datasets. We will then go on to learn how to explore the data using tables and graphics. Finally, we will cover the topic of cleaning and exploring text data as well as time data.

By the end of the course the students will be able to work with multiple types of data and be able to manipulate them in order to prepare them for analysis. They will know the main steps needed to achieve this in an efficient way.

The course will be divided in four topics. Each one will be covered in two weeks. The first week will cover the online course and the reading materials. In the second week students will have to prepare a project based on what they learned in the first week.
Readings

Mandatory Readings
Wickham, H., & Grolemund, G. (2017). R for Data Science. O'Reilly UK Ltd. (http://r4ds.had.co.nz/)

Complementary Readings

Academic Conduct

Clear definitions of the forms of academic misconduct, including cheating and plagiarism, as well as information about disciplinary sanctions for academic misconduct may be found at

https://www.president.umd.edu/sites/president.umd.edu/files/documents/policies/III-100A.pdf (University of Maryland) and

Knowledge of these rules is the responsibility of the student and ignorance of them does not excuse misconduct. The student is expected to be familiar with these guidelines before submitting any written work or taking any exams in this course. Lack of familiarity with these rules in no way constitutes an excuse for acts of misconduct. Charges of plagiarism and other forms of academic misconduct will be dealt with very seriously and may result in oral or written reprimands, a lower or failing grade on the assignment, a lower or failing grade for the course, suspension, and/or, in some cases, expulsion from the university.

Accommodations for Students with Disabilities

In order to receive services, students at the University of Maryland must contact the Accessibility & Disability Service (ADS) office to register in person for services. Please call the office to set up an appointment to register with an ADS counselor. Contact the ADS office at 301.314.7682; https://www.counseling.umd.edu/ads/.

Students at the Mannheim Business School should contact the Commissioner and Counsellor for Disabled Students and Students with Chronic Illnesses at http://www.uni-mannheim.de/studienbueros/english/counselling/disabled_persons_and_persons_with_chronic_illnesses/

Course Evaluation

In an effort to improve the learning experience for students in our online courses, students will be invited to participate in an online course evaluation at the end of the course. Participation is entirely voluntary and highly appreciated.
Sessions

Week 1:

Video lecture: available Tuesday, June 1, 2021

Online meeting: Monday, June 7, 2021, 3:00 PM EDT/9:00 PM CEST

Online question week 1: due Sunday, June 6, 2021, 3:00 PM EDT/9:00 PM CEST

Required Readings (chapter numbers from online books):
- Chapters 20-21 from “R for Data Science.” (http://r4ds.had.co.nz/)

Recommended Readings (chapter numbers form online book):
- Chapters 4, 6, 8 from “R for Data Science.” (http://r4ds.had.co.nz/)

Week 2:

Video lecture: available Tuesday, June 8, 2021

Online meeting: Monday, June 14, 2021, 3:00 PM EDT/9:00 PM CEST

Online question week 2: due Sunday, June 13, 2021, 3:00 PM EDT/9:00 PM CEST

Graded project 1: due Wednesday, June 16, 2021, 3:00 PM EDT/9:00 PM CEST

Week 3:

Video lecture: available Tuesday, June 15, 2021

Online meeting: Monday, June 21, 2021, 3:00 PM EDT/9:00 PM CEST

Online question week 3: due Sunday, June 20, 2021, 3:00 PM EDT/9:00 PM CEST

Required Readings (chapter numbers form online book):
- Chapters 5, 10-13, 15 from “R for Data Science.” (http://r4ds.had.co.nz/)

Week 4:

Video lecture: available Tuesday, June 22, 2021

Online meeting: Monday, June 28, 2021, 3:00 PM EDT/9:00 PM CEST
Online question week 4: due Sunday, June 29, 2021, 3:00 PM EDT/9:00 PM CEST

Graded project 2: due Wednesday, June 30, 2021, 3:00 PM EDT/9:00 PM CEST

Please note one week break here!

Week 5:

Video lecture: available Tuesday, July 6, 2021

Online meeting: Monday, July 12, 2021, 3:00 PM EDT/9:00 PM CEST

Online question week 5: due Sunday, July 11, 2021, 3:00 PM EDT/9:00 PM CEST

Required Readings (chapter numbers form online book):
Chapters 3, 7, and 28 from “R for Data Science.” (http://r4ds.had.co.nz/)

Recommended Readings (chapter numbers form online book):
Chapters 27 and 29 from “R for Data Science.” (http://r4ds.had.co.nz/)

Week 6:

Video lecture: available Tuesday, July 13, 2021

Online meeting: Monday, July 19, 2021, 3:00 PM EDT/9:00 PM CEST

Online question week 6: due Sunday, July 18, 2021, 3:00 PM EDT/9:00 PM CEST

Graded project 3: due Wednesday, July 21, 2021, 3:00 PM EDT/9:00 PM CEST

Week 7:

Video lecture: available Tuesday, July 20, 2021

Online meeting: Monday, July 26, 2021, 3:00 PM EDT/9:00 PM CEST

Online question week 7: due Sunday, July 25, 2021, 3:00 PM EDT/9:00 PM CEST

Required Readings (chapter numbers form online book):
Chapters 14 and 16 from “R for Data Science.” (http://r4ds.had.co.nz/)

Week 8:

Video lecture: available Tuesday, July 27, 2021
Online meeting: Monday, August 2, 2021, 3:00 PM EDT/9:00 PM CEST

Online question week 8: due Sunday, August 1, 2021, 3:00 PM EDT/9:00 PM CEST

Graded project 4: due Wednesday, August 4, 2021, 3:00 PM EDT/9:00 PM CEST

Project/Homework/Final exam

Final graded project: due Wednesday, August 11, 2021, 3:00 PM EDT/9:00 PM CEST