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Area level model (Fay & Herriot 1979)

𝑦𝑦𝑖𝑖 = 𝑌𝑌𝑖𝑖 + 𝑒𝑒𝑖𝑖

 = (𝒙𝒙𝑖𝑖′𝛽𝛽 + 𝑢𝑢𝑖𝑖) + 𝑒𝑒𝑖𝑖

Model Assumptions:

• 𝑢𝑢𝑖𝑖  ~ 𝑖𝑖. 𝑖𝑖.𝑑𝑑.  𝑁𝑁 0,𝜎𝜎𝑢𝑢2  (and independent of 𝑒𝑒𝑖𝑖)

• 𝑒𝑒𝑖𝑖 ~ 𝑖𝑖𝑖𝑖𝑖𝑖.  𝑁𝑁 0, 𝑣𝑣𝑖𝑖

• 𝒗𝒗𝒊𝒊  are known

Note: We really only have estimates �𝑣𝑣𝑖𝑖  of 𝑣𝑣𝑖𝑖 .
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Best Linear Unbiased Prediction

Assuming 𝜎𝜎𝑢𝑢2 and the 𝑣𝑣𝑖𝑖  are known:

�𝑌𝑌𝑖𝑖 = ℎ𝑖𝑖𝑦𝑦𝑖𝑖 + (1 − ℎ𝑖𝑖)𝒙𝒙𝑖𝑖′𝛽̂𝛽

          var 𝑌𝑌𝑖𝑖 − �𝑌𝑌𝑖𝑖 = 𝜎𝜎𝑢𝑢2(1 − ℎ𝑖𝑖) + (1 − ℎ𝑖𝑖)2𝒙𝒙𝑖𝑖′var(𝛽̂𝛽)𝒙𝒙𝑖𝑖

where  ℎ𝑖𝑖 = 𝜎𝜎𝑢𝑢2/(𝜎𝜎𝑢𝑢2 + 𝑣𝑣𝑖𝑖).

To account for uncertainty about 𝜎𝜎𝑢𝑢2:

• ML, REML – asymptotic results (Prasad and Rao 1990, Datta and Lahiri (2000))
• Jackknife approach (Jiang, Lahiri, and Wan 2002)
• Bayes – posterior variance

Uncertainty about sampling error variances 𝑣𝑣𝑖𝑖  is generally ignored.
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Application: Census Bureau’s SAIPE (Small Area Income and Poverty Estimates) state poverty rate 
models for ages 0 – 4, 5 – 17, 18 – 64, and 65+  (developed by Bob Fay)

Direct state estimates 𝑦𝑦𝑖𝑖  from Current Population Survey (CPS),  1989 – 2005

Regression variables in 𝒙𝒙𝑖𝑖 include a constant term and, for each state,

• pseudo state poverty rate from tax return information and also tax “nonfiler” rate

• food stamp (SNAP) participation rate (age 0 – 4, 5 – 17, 18 – 64) or supplemental security income 
participation rate (age 65+)

• previous census long form estimated poverty rate, or residuals from regressing previous census 
estimate on other elements of 𝒙𝒙𝑖𝑖 for the census year

Note: Model specifics have changed some over the years.
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2. Sampling variances aren’t known, they are estimated 

What happens when �𝑣𝑣𝑖𝑖 ≠ 𝑣𝑣𝑖𝑖 in the Fay-Herriot model?

• How much does 𝐸𝐸[(𝑌𝑌𝑖𝑖 − �𝑌𝑌𝑖𝑖)2] increase?

• How much do we misstate 𝐸𝐸[(𝑌𝑌𝑖𝑖 − �𝑌𝑌𝑖𝑖)2]?

• Can we (partly) address these issues by modeling �𝑣𝑣𝑖𝑖?
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2. Rough calculations of consequences of ̂ 6= 

Consider simple case where  and 2 are known ( very large), but 
are unknown, estimated by ̂. Let

̃ =  + (1− )x
0


̂ = ̂ + (1− ̂)x
0


where

 =
2

2 + 
=

Ã
1 +


2

!−1
̂ =

2
2 + ̂

=

Ã
1 +

̂
2

!−1


Then the MSE of ̂ conditional on ̂ is

[( − ̂)
2|̂] = [( − ̃)

2] +[(̃ − ̂)
2|̂]

The MSE of ̃ is 
2
(1− ). The reported MSE of ̂ is 

2
(1− ̂).
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After a little algebra, we have that

MSE pct diff ≡ 100× MSE( − ̂)− MSE( − ̃)

MSE( − ̃)

= 100× ( − ̂)
2

(1− )


MSE relbias = 100× reported MSE( − ̂)− actual MSE( − ̂)

actual MSE( − ̂)

= 100×
(

2(1− ̂)

2(1− ) + ( − ̂)2(2 + )
− 1

)

= 100×
(

(1− ̂)

(1− ) + ( − ̂)2
− 1

)

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We examine MSE pct diff and MSE relbias for multiplicative errors in ̂
as an estimate of :

underestimation factors: ̂ =
3
4
1
2
1
4

overestimation factors: ̂ =
4
3 2 4

For each of the above values of ̂, plot MSE pct diff and MSE relbias

for values of 
2
 from 02     1     50 (on log scale).
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Conclusions for large 
2
:

• Underestimation of  is the more severe problem for both MSE pct

diff and MSE relbias.

MSE increase is due to ̂  , so too much weight given to .

Conclusions for small 
2
:

• Overestimation of  is the more severe problem for MSE pct diff.

• MSE relbias is very severe from either severe under- or overestimation

of .
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Since large errors in ̂ seem more likely when 
2
 is large, our general

conclusion is:

The largest potential problem comes from

severe underestimation of  when 
2
 is large.
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Given an assumed distribution of ̂, unconditional versions of MSE pct

diff and MSE relbias can be computed as

MSE pct diff = 100× [( − ̂)
2]

(1− )


MSE relbias = 100×
(

(1− ̂)

(1− ) +[( − ̂)2]
− 1

)


We do this (by numerical integration) assuming ̂ ∼ 
2
 for three

values of  (6, 16, 80):

Table 1. 5% and 95% points for the 2 distribution

 5% point 95% point
6 27 210
16 50 164
80 75 127
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Dealing with uncertainty about 𝑣𝑣𝑖𝑖 

• Frequentist approach – asymptotic MSE results

• Wang and Fuller (2003); Rivest and Vandal (2003)

• Bayesian approach – model �𝑣𝑣𝑖𝑖 as scaled 𝜒𝜒𝑑𝑑2 or Gamma 
• You and Chapman (2006); Sugasawa, Tamae, and Kubokawa (2017)

• Issues:

• Degrees of freedom, d, may be difficult to determine (Huang and Bell 2010).

• Assumes independence of 𝑦𝑦𝑖𝑖  and �𝑣𝑣𝑖𝑖. This may be OK when estimating means but can fail badly for 
estimating proportions.

• Try to improve �𝑣𝑣𝑖𝑖  by using, e.g., a generalized variance function (GVF)
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3. Random effect variance may be estimated to be zero

Comments on alternative estimation approaches

• Method of moments – inefficient, unstable, can produce �𝜎𝜎𝑀𝑀𝑀𝑀𝑀𝑀2 < 0.
• Weighted version from Fay and Herriot (1979) should be better.

• ML, asymptotically efficient, but can produce �𝜎𝜎𝑀𝑀𝑀𝑀2 = 0

• REML – removes some bias in ML, but can produce �𝜎𝜎𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 = 0

• Adjusted maximum likelihood approaches have been proposed to avoid �𝜎𝜎𝑢𝑢2 = 0 (e.g., Yoshimori 
and Lahiri 2012).

• Bayes – avoids problem of �𝜎𝜎𝑢𝑢2 = 0  (with appropriate prior on 𝜎𝜎𝑢𝑢2).
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Alternative priors for 𝜎𝜎𝑢𝑢2 in the Bayesian approach:

• 𝑝𝑝(𝜎𝜎𝑢𝑢2) ∝ constant on (0,∞)                                     (SAIPE state model uses this)

• 𝑝𝑝(𝜎𝜎𝑢𝑢) ∝ constant on (0,∞) ⇒ 𝑝𝑝(𝜎𝜎𝑢𝑢2) ∝ 1/𝜎𝜎𝑢𝑢      (Gelman, et al. 2004)

• 𝜎𝜎𝑢𝑢2~𝐼𝐼𝐼𝐼 𝜖𝜖, 𝜖𝜖 , that is, 1/𝜎𝜎𝑢𝑢2~ Gamma 𝜖𝜖, 𝜖𝜖 , for small 𝜖𝜖 > 0 such as 𝜖𝜖 = .01 or .001    (WinBUGS) 
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Implications of 2 = 0:

1. If  were observed (CPS a complete census) model would fit perfectly.

2. Weight given to direct estimate is  = 0 for all , so
b = x0b.

3. Var( − b) = x0Var
³bβ´x comes only from error in estimating β,

and varies only with x.

¯̄̄
U.S. Department of Commerce
Economics and Statistics Administration

U.S. CENSUS BUREAU
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Illustrating the potential problems in prediction with ̂2 = 0

SAIPE state 5-17 poverty rate model

Alternative Estimates of σ2 for Five Years

year ML REML Bayes

1989 0 0 17

1990 0 0 22

1991 0 0 16

1992 0 0 16

1993 4 17 34

Why do we get ̂2 = 0?

¯̄̄
U.S. Department of Commerce
Economics and Statistics Administration

U.S. CENSUS BUREAU
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Sampling variances () for IY 1992

state   

CA 209 4 927 19

NC 230 2 400 55

MS 296 796 124

DC 316 527 334

Compare the  to

year 1989 1990 1991 1992 1993

̂2 17 22 16 16 34

¯̄̄
U.S. Department of Commerce
Economics and Statistics Administration

U.S. CENSUS BUREAU
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MSE Estimates for 1992

(̂2 = ̂2 = 0 ̂
2
 = 16)

state 

















CA 13 36 13 28 14 14

NC 6 20 6 12 14 20

MS 28 38 28 30 39 40

¯̄̄
U.S. Department of Commerce
Economics and Statistics Administration

U.S. CENSUS BUREAU
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MSE estimates for 1993

(̂2 = 4 ̂2 = 17 ̂
2
 = 34)

state 

















CA 15 32 16 22 17 17

NC 10 24 17 22 20 20

MS 32 43 42 45 50 51

¯̄̄
U.S. Department of Commerce
Economics and Statistics Administration

U.S. CENSUS BUREAU
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Conclusions (for estimating prediction MSE):

• Problems with ̂2 = 0 for ML; unreasonable implications for prediction
MSE

• Problems not solved by REML

• MSE problems not solved by asymptotically allowing for uncertainty
about 2

• Bayesian results look more reasonable

¯̄̄
U.S. Department of Commerce
Economics and Statistics Administration

U.S. CENSUS BUREAU
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4. Dealing with outliers in the Fay-Herriot model 

Regression residuals from the Fay-Herriot model:

𝑦𝑦𝑖𝑖 = (𝒙𝒙𝑖𝑖′𝛽𝛽 + 𝑢𝑢𝑖𝑖) + 𝑒𝑒𝑖𝑖  ⇒ 𝑦𝑦𝑖𝑖 − 𝒙𝒙𝑖𝑖′𝛽𝛽 = 𝑢𝑢𝑖𝑖 + 𝑒𝑒𝑖𝑖

We see outliers in 𝑦𝑦𝑖𝑖 − 𝒙𝒙𝑖𝑖′𝛽𝛽 could arise from large values of either |𝑢𝑢𝑖𝑖| or |𝑒𝑒𝑖𝑖|  (or both).

Implications:

1.  𝑢𝑢𝑖𝑖 an outlier ⇒ regression model is no good for area 𝑖𝑖

                   ⇒  give more weight to direct estimate 𝑦𝑦𝑖𝑖  in the prediction of 𝑌𝑌𝑖𝑖

      Unfortunately, not a good solution if sample size for 𝑦𝑦𝑖𝑖  is small.

2.   𝑒𝑒𝑖𝑖  an outlier ⇒ direct estimate 𝑦𝑦𝑖𝑖  is no good for area 𝑖𝑖

                              ⇒  give more weight to regression prediction 𝒙𝒙𝑖𝑖′𝛽̂𝛽 in the prediction of 𝑌𝑌𝑖𝑖

       A reasonable solution in this case.

Problem: It may be difficult to distinguish between these two cases.
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Literature (e.g., Datta and Lahiri (1995); Ghosh, Maiti, and Roy (2006)) has tended to focus on Case 1 
(𝑢𝑢𝑖𝑖  an outlier) probably for two reasons:

• Seems a natural extension of the Gaussian model

• Central limit theorem invoked for approximate normality of sampling error. 

Why might 𝑒𝑒𝑖𝑖 be subject to outliers?

• Approximate normality is a large sample result that may not hold for direct estimates for small areas.

• Nonsampling error
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Example: SAIPE state poverty rate models for 1989

Standardized residuals for Connecticut

Age std. res.

0-4 −25

5-17 −35

18-64 −29

65+ −03
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1989 poverty rate estimates for Connecticut

Age std. res. CPS x0β̂

0-4 −25 2.6% 13.2%

5-17 −35 2.2% 10.5%

18-64 −29 2.2% 5.2%

65+ −03 7.0% 7.1%
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1989 poverty rate estimates for Connecticut

Age std. res. CPS x0β̂ 90 Census

0-4 −25 2.6% 13.2% 11.6%

5-17 −35 2.2% 10.5% 9.7%

18-64 −29 2.2% 5.2% 5.3%

65+ −03 7.0% 7.1% 7.2%
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Extending the Fay-Herriot (1979) model using the
𝑡𝑡-distribution for outliers – Case 1

𝑦𝑦𝑖𝑖 = 𝑌𝑌𝑖𝑖 + 𝑒𝑒𝑖𝑖
 = (𝒙𝒙𝑖𝑖′𝛽𝛽 + 𝑢𝑢𝑖𝑖) + 𝑒𝑒𝑖𝑖

1. Assume, as usual, that 𝑒𝑒𝑖𝑖~ ind. 𝑁𝑁(0, 𝑣𝑣𝑖𝑖) with the 𝑣𝑣𝑖𝑖  assumed known, but specify a 
𝑡𝑡-distribution for the random effects 𝑢𝑢𝑖𝑖:

𝑢𝑢𝑖𝑖|𝜃𝜃𝑖𝑖 ,𝜎𝜎𝑢𝑢2 ~ ind. 𝑁𝑁(0, 𝜃𝜃𝑖𝑖𝜎𝜎𝑢𝑢2)
1
𝜃𝜃𝑖𝑖

~ Gamma
𝜈𝜈
2

,
𝜈𝜈 − 2

2

       Then (Gelman, et al. 2004)

• 𝑢𝑢𝑖𝑖|𝜎𝜎𝑢𝑢2 ~ 𝑖𝑖. 𝑖𝑖.𝑑𝑑.  𝑡𝑡𝜈𝜈 0,𝜎𝜎𝑢𝑢2
𝜈𝜈−2
𝜈𝜈

• 𝐸𝐸 𝜃𝜃𝑖𝑖 = 1, 𝑣𝑣𝑣𝑣𝑣𝑣 𝑢𝑢𝑖𝑖 = 𝜎𝜎𝑢𝑢2
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Extending the Fay-Herriot (1979) model using the
𝑡𝑡-distribution for outliers – Case 2

𝑦𝑦𝑖𝑖 = 𝑌𝑌𝑖𝑖 + 𝑒𝑒𝑖𝑖
 = (𝒙𝒙𝑖𝑖′𝛽𝛽 + 𝑢𝑢𝑖𝑖) + 𝑒𝑒𝑖𝑖

2. Assume, as usual, that 𝑢𝑢𝑖𝑖  ~ 𝑖𝑖. 𝑖𝑖.𝑑𝑑. 𝑁𝑁(0,𝜎𝜎𝑢𝑢2), but specify a 𝑡𝑡-distribution for the 
survey errors 𝑒𝑒𝑖𝑖:

𝑒𝑒𝑖𝑖|𝜃𝜃𝑖𝑖 , 𝑣𝑣𝑖𝑖  ~ ind. 𝑁𝑁(0, 𝜃𝜃𝑖𝑖𝑣𝑣𝑖𝑖)     where 𝑣𝑣𝑖𝑖  is known
1
𝜃𝜃𝑖𝑖

~ Gamma
𝜈𝜈
2

,
𝜈𝜈 − 2

2

     Then (Gelman, et al. 2004)

• 𝑒𝑒𝑖𝑖|𝑣𝑣𝑖𝑖 ~ 𝑖𝑖. 𝑖𝑖.𝑑𝑑.  𝑡𝑡𝜈𝜈 0, 𝑣𝑣𝑖𝑖
𝜈𝜈−2
𝜈𝜈

• 𝐸𝐸 𝜃𝜃𝑖𝑖 = 1, 𝑣𝑣𝑣𝑣𝑣𝑣 𝑒𝑒𝑖𝑖 = 𝑣𝑣𝑖𝑖
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Notes on the -distribution models:

• We assume, for simplicity, that  is fixed and known, and   2.

Here we use  = 3 4 5 8∞ (normal).

• Priors for Bayesian inference:

— β ∼ (0 ) with  large

— 2 ∼ (0) with  large.

• To make inferences under either of the above two models we used
WinBUGS 1.4 with 10,000 simulations of the model parameters.
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Example: SAIPE state 5-17 poverty rate model for 1989

Effects of assuming a -distribution on the posterior mean of 2

-distribution degrees of freedom ()
assumed for 3 4 5 8 ∞ (normal)

 3.4 2.8 2.6 2.3 2.2

 3.3 2.4 2.1 1.9 2.2
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Example: SAIPE state 5-17 poverty rate model for 1989

Standardized regression residuals for Connecticut conditional on θi

t-distribution degrees of freedom (ν)
assumed for 3 4 5 8 ∞ (normal)

ui -1.94 -2.26 -2.43 -2.65 -2.80

ei -1.45 -1.71 -1.86 -2.19 -2.80

(Note: Bayesian results above differ some from ML results given earlier.)
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Example: SAIPE state 5-17 poverty rate model for 1989

Posterior means and variances for Connecticut

-distribution degrees of freedom ()
assumed for 3 4 5 8 ∞

(|y) 7.2% 7.7% 7.9% 8.3% 8.6%


Var(|y) 8.4 7.0 6.1 4.7 3.5

(|y) 9.7% 10.0% 10.0% 9.8% 8.6%


Var(|y) 7.5 5.7 4.9 4.2 3.5

Note for Connecticut:  = 22% x0β̂ = 105% Var()
5 = 25
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5. Conclusions 

Sampling variances aren’t known, they are estimated.

• Lowers prediction accuracy

• Affects MSE estimates

• Try to improve estimated sampling variances �𝑣𝑣𝑖𝑖  (e.g., with a GVF model)

Model estimation can produce �𝜎𝜎𝑢𝑢2 = 0, which leads to awkward prediction results.

• Bayesian approach with an appropriate prior can address this

Outliers in Fay-Herriot models can arise from the random area effects (𝑢𝑢𝑖𝑖) or from the sampling errors 
(𝑒𝑒𝑖𝑖) in the direct survey estimates.

• The implications of these two sources for outliers are very different.

• Try to use additional information to determine the source.
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