Discussion

R. Valliant

Models or Model-Free?

- Design-based inference is model-free
- An estimator can be unbiased in repeated probability sampling but biased under a model
- Easy example
 - Select simple random sample
 - Estimate population average by sample mean

Design vs. Model-bias

- Design bias of sample mean is 0
- Model-bias (if straight-line thru origin) is

$$E_M\left(\overline{Y}_S - \overline{Y}_U\right) \propto \left(\overline{x}_S - \overline{x}_U\right)$$

 \bullet Model-bias has order $1/\sqrt{n}$ and so does $SE\left(\overline{Y}_{\mathcal{S}}\right)$

⇒ Confidence intervals will not have correct coverage in off-balance SRS's

Use of Models

- Good way to develop estimators (non-Bayes or Bayes)
- Every estimator can be analyzed under a model
- If "implied" model for estimator is unrealistic, then estimator is bad
- Calibration in repeated applications needed

Long-run Calibration

- Critical to maintain acceptance
- Must be able to say we are unbiased and Cl's cover at advertised rates (regardless of methods used—design-based, model-based, Bayes, non-parametric)
- With NR, non-coverage (NC) assurance of calibration uncertain
 - Extent of and reasons for NR, NC out of our control

Coverage Problems

- HH surveys: some groups not covered by frame
 - CPS: 70% of Black males age 25-34
 - BRFSS 44 border counties: 15% of Hispanic males, 18-24
- GREG (e.g., poststrata) can correct for NR, NC
 - Useful when little known about NR's individually
- PS collapsing procedures based on cell similarity (e.g., adjacent age groups) can be biased
- Collapsing should be based on Y's or coverage rates to avoid bias (Kim, Li, Valliant 2006)

How many distributions do we need?

- 1. Superpopulation model
- 2. Random selection model
- 3. Response model
- 4. Coverage model
- 5. Imputation model
- 6. Prior
- 7. Hyper-prior
- 8. Posterior

Logistics

- NR, NC adjustments need to consider outcomes (Y's), design variables (Z's), sample covariates (X's), R (response/nonresponse)
- Weighters often have access to (Z,X,R) or (Z,R) only
- Editing of Y's and X's on parallel track
- Some Y's will never be available in timely way
 - Biomarker processing—blood, urine, etc

Multiple Outcome Variables

- Surveys collect many Y's
- What works for one may not work for others
 - NR adjustments, important covariates for models
- How many Y's to consider?
 - How to develop compromise procedures
 - Never be able to cover all Y's

Response Models

- Info needed for R's and NR's
- Establishment surveys may have many Z's on both
- Almost nothing may be known about NR's in some surveys—telephone
- Response models will be wrong
 - Omitted, unknown regressors
 - Response rates are declining
 - More uncontrolled reasons for being in nonsample ⇒
 - more problems in fitting response models
 - more problems predicting values for nonsample units

Some Issues

- Prediction models for categorical variables
 - Some surveys collect no quantitative variables
 - Ordered and unordered categorical
 - Normality assumptions unreal
- Aggregation consistency
 - Low level estimates of totals need to add to higher level estimates
- Users expect weights