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Design vs. model-based survey inference
• Design-based (Randomization) inference

– Survey variables Y fixed, inference based on 
distribution of sample inclusion indicators, I

• Model-based inference: Survey variables Y also 
random, assigned statistical model, often with 
fixed parameters. Two variants:
– Superpopulation: Frequentist inference based on 

repeated samples from sample and superpopulation 
(hybrid approach)

– Bayes: add prior for parameters; inference based on 
posterior distribution of finite population quantities

• key distinction in practice is randomization or model
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My overarching philosophy: calibrated Bayes
• Survey inference is not fundamentally different 

from other problems of statistical inference
– But it has particular features that need attention

• Statistics is basically prediction: in survey setting, 
predicting survey variables for non-sampled units

• Inference should be model-based, Bayesian 
• Seek models that are “frequency calibrated”: 

– Incorporate survey design features
– Properties like design consistency are useful
– “objective” priors generally appropriate

• Little (2004, 2006); Little & Zhang (2007)
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Weighting
• A pure form of design-based estimation is to 

weight sampled units by inverse of inclusion 
probabilities
– Sampled unit i “represents” units in the population

• More generally, a common approach is:
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Prediction
• The goal of model-based inference is to predict the non-

sampled values 

• Prediction approach captures design information with 
covariates, fixed and random effects, in the prediction 
model

• (objective) Bayes is superior conceptual framework, but 
superpopulation models are also useful

• Compare weighting and prediction approaches, and argue 
for model-based prediction
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The common ground
• Weighters can’t ignore models
• Modelers can’t ignore weights
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Weighters can’t ignore models
• Weighting units yields design-unbiased or design-

consistent estimates
– In case of nonresponse, under “quasirandomization”

assumptions

• Simple, prescriptive
– Appearance of avoiding an explicit model

• But poor precision, confidence coverage when 
“implicit model” is not reasonable
– Extreme weights a problem, solutions often ad-hoc 
– Basu’s (1971) elephants
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• Circus statistician requires “scientific” prob. sampling:
Select Sambo with probability 99/100
One of other elephants with probability 1/4900
Sambo gets selected! Trainer: 
Statistician requires unbiased Horvitz-Thompson (1952)  

estimator:

Ex 1. Basu’s inefficient elephants

• Circus trainer wants to choose “average” elephant (Sambo)

( )1 50,...,  weights of 50 elephantsy y N= =

1 2 50Objective: ... . Only one elephant can be weighed!T y y y= + + +

(Sambo)

( )

/ 0.99 (!!);                          ˆ
4900 ,if Sambo not chosen (!!!)HT

i

y
T

y
⎧

= ⎨
⎩

HT estimator is unbiased on average but always crazy!
Circus statistician loses job and becomes an academic

(Sambo)
ˆ 50t y= ×
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What went wrong?
• HT estimator optimal under an implicit model that

have the same distribution
• That is clearly a silly model given this design …
• Which is why the estimator is silly

/i iy π
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Modelers can’t ignore weights
• All models are wrong, some models are useful
• Models that ignore features like survey weights 

are vulnerable to misspecification
– Inferences have poor properties 
– See e.g. Kish & Frankel (1974), Hansen, Madow & 

Tepping (1983)

• But models can be successfully applied in survey 
setting, with attention to design features
– Weighting, stratification, clustering
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Ex 2. One categorical post-stratifier Z
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One categorical post-stratifier Z

Z Y Z
Sample   Population

mod w
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One categorical post-stratifier Z

Z Y Z
Sample   Population

mod wt
1 1 1

/

2. Variance estimation:
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Bayes with objective prior yields t-type correctio
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condition on { }

{ } are not fixed in repeated sampling

But if allowed to vary, the sampling variance is not defined!
(Holt and Smith 1971, Little 1993)
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Ex 3. One stratifier , one post-stratifier
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Design-based approaches
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1 2 1 2Z Z Y Z Z
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What to do when  is small?

Model: replace  by prediction from modified model:

e.g. ~ Nor( , ),
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Setting = 0 yields additive model, 
otherwise shrinks towards additive model
Design: arbitrary collapsing, ad-hoc modification of weight
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Ex 3. One stratifier , one post-stratifier 2Z1Z
Model-based approach
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Ex 4. One continuous (post)stratifier Z

Z Y Z
Sample   Population

wt
1

2 2
wt

mod
1 1

1 / ;  selection prob (HT)

 prediction estimate for ~ Nor( , ) ("HT model")
This motivates following robust modeling approach:
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Consider PPS sampling, Z = measure of size

Design: HT or Generalized Regression
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Simulation: PPS sampling in 6 populations
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Estimated RMSE of four estimators for 
N=1000, n=100

Population  model wt gr
Normal 20 33 21NULL 
Lognormal 32 44 31
Normal 23 24 25LINUP  

 Lognormal 25 30 30
Normal 30 66 29LINDOWN 

 Lognormal 24 65 28
Normal 35 134 90SINE 
Lognormal 53 130 84
Normal 26 32 57EXP 
Lognormal 40 41 58
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95% CI coverages: HT
 

 
 
 
V1  Yates-Grundy, Hartley-Rao for joint inclusion probs. 
V3 Treating sample as if it were drawn with replacement 
V4 Pairing consecutive strata 
V5 Estimation using consecutive differences 
 

Population V1 V3 V4 V5 
NULL 90.2 91.4 90.0 90.4
LINUP 94.0 95.0 95.0 95.0

LINDOWN 89.0 89.8 90.0 90.6
SINE 93.2 93.4 93.0 93.0
EXP 93.6 94.6 95.0 95.0
ESS 95.0 95.6 95.4 95.2
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95% CI coverages: B-spline
 

 
 
V1  Model-based (information matrix) 
V2 Jackknife 
V3 BRR 
 

Population V1 V2 V3 
NULL 95.4 95.8 95.8
LINUP 94.8 97.0 94.6

LINDOWN 94.2 94.2 94.6
SINE 88.0 92.6 97.4
EXP 94.4 95.2 95.6
ESS 97.4 95.4 95.8

Fixed with 
more knots
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Why does model do better?
• Assumes smooth relationship – HT weights can 

“bounce around”
• Predictions use sizes of the non-sampled cases

– HT estimator does not use these
– Often not provided to users (although they could be)

• Little & Zheng (2007) also show gains for model 
when sizes of non-sampled units are not known
– Predicted using a Bayesian Bootstrap (BB) model
– BB is a form of stochastic weighting



Survey weights 26

Outline of talk
1. Big picture: design vs. model-based 

inference, weighting vs. prediction
2. Comparisons of weighting and prediction
3. Weighting and prediction for nonresponse
4. Robust modeling strategies
5. Variance estimation and inference



Survey weights 27

Ex 5. Unit nonresponse
• Predict nonrespondents by regression on 

design variables Z and any observed survey 
variables X

• For bias reduction, predictors should be 
related to propensity to respond R and 
outcome Y

• In choosing from a set of predictors, good 
prediction of Y is more important than good 
prediction of R

Z X Y R Z
Sample     Pop

1

0
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Impact of weighting for nonresponse

• Standard “rule of thumb”
fails to reflect that nonresponse weighting can reduce variance 

• Little & Vartivarian (2005) propose refinements 

High

---Low

HighLow

var ⇓

var bias ⇓ ⇓var ↑

2corr ( , )X Y

2corr ( , )X R

Too often adjustments do 
this?

w uVar( ) Var( )(1 cv( ))y y w= +
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Weighting squared?
• Nonresponse weights are often computed using units 

weighted by their sampling weights

– Gives unbiased estimate of response rate in each 
adjustment cell defined by X

– Not correct from a prediction perspective
– For nonresponse bias, need to condition on X and Z, not 

just X
– Does not correct for bias when Z is associated with R and Y
– Need to condition on design variables involved in sampling 

weight (as in predictive inference)

( ) ( )1
2 1 1 11, 1, 0,

/
i i i i i i

j i i ir x j r x j r x j
w w w w−

= = = = = =
= +∑ ∑ ∑

1{ }iw
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Simulation Study
• Simulations to provide insight into the variance 

and bias of estimators of weighted and unweighted
rates and alternative estimators, under a variety of 
population structures and nonresponse 
mechanisms. (Little & Vartivarian 2003)

• Categorical outcome, to avoid distributional 
assumptions such as normality.

• 25 populations to cover all combinations of 
models for Y and R given Z and X
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RMSE’s of three methods

47.1356239715635614177563753425851wrr(x)

47.1356339765834594071543751425349urr(x)

38.2343538383633373939383636424140Pred(xz)

Ave*ØZXaddXZØZXaddXZØZXaddXZR model

Ave*ZZZZZaddaddaddaddaddXZXZXZXZXZY model

(*Models for Y that exclude Z are omitted to save space –
methods are all similar for these cases)
urr(x) is biased when both Y and R depend on Z.
wrr(x) does not generally correct the bias in these 
situations: similar to urr[x] overall
Prediction based on model for X and Z is best
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Item nonresponse
• Item nonresponse generally has complex “swiss-

cheese” pattern
• Weighting methods are possible when the data 

have a monotone pattern, but are very difficult to 
develop for a general pattern

• Model-based multiple imputation methods are 
available for this situation (Little & Rubin 2002)
– By conditioning fully on all observed data, these 

methods weaken MAR assumption



Survey weights 33

Outline of talk
1. Big picture: design vs. model-based 

inference, weighting vs. prediction.
2. Comparisons of weighting and prediction
3. Weighting and prediction for nonresponse
4. Robust modeling strategies
5. Variance estimation and inference



Survey weights 34

Making predictions more robust
• Model predictions of missing values are 

potentially sensitive to model misspecification, 
particularly if data are not MCAR

True regression

Linear fit to observed data

X

Y
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Relaxing Linearity: one X
• A simple way is to categorize      and predict within 

classes -- link with weighting methods
• For continuous     and sufficient sample size, a  spline 

provides one useful alternative (cf. Breidt & Opsomer
2000) . We use a P-Spline approach:

( )
( ) ( )

( ) ( )

2
1 1 1 1

1 1 0 1 1
1 1

1

q+1

( | , ) ~ Nor ( , ),

, ,

 0 ,

  are selected fixed knots
,...,  are random effects, shrink to zero

q K
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j q k k
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Y X s X
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τ τ
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+

+
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More than one covariate
• When we model the relationship with many 

covariates by smoothing, we have to deal with the 
“curse of dimensionality”. 
– One approach is to “calibrate” the model by adding 

weighted residuals (e.g. Scharfstein & Izzarry 2004, 
Bang & Robins 2005).

– Strongly related to generalized regression approach in 
surveys (Särndal, Swensson & Wretman 1992)

– Little & An (2004) achieve both robustness and 
dimension reduction with many covariates, using the 
conceptually simple model-based approach.
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Penalized Spline of Propensity  
Prediction (PSPP)

• Focus on a particular function of the covariates most 
sensitive to model misspecification, the response 
propensity score.

• Important to get relationship between Y and response 
propensity correct, since misspecification of this leads 
to bias (Rubin 1985, Rizzo 1992)

• Other X’s balanced over respondents and 
nonrespondents, conditional on propensity scores 
(Rosenbaum & Rubin 1983); so misspecification of 
regression of these is less important (loss of precision, 
not bias).
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The PSPP method

*
1

* * 2
2

( |  , ,...,  ; ) ~  

                      Nor( ( )  ( ,  ,...,  ; ), )
p

p

Y Y X X

s Y g Y X X

β

β σ+

Parametric part
Misspecification does
not lead to bias
Increase precision
X1 excluded to prevent 
multicollinearity

Nonparametric part
Need to be correctly specified
We choose penalized spline

Define: Y*=logit (Pr(R = 1|X1,…,Xp )) (Need to estimate)



Survey weights 39

Double Robustness Property
The PSPP method yields a consistent estimator for the 
marginal mean of Y, if: 
(a) the mean of Y given                    is correctly specified, 

OR
(b1) the propensity is correctly specified, and 
(b2) relationship of outcome with propensity is correctly 
specified
Note: in (b), parametric part of model does not have to be 
correctly specified!
PSPP can be extended to handle general patterns of 
missing data
Applies to other problems of selection, e.g. sampling 
(Little & An 2004)

1,..., pX X
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Role of Models in Classical Approach
• Models are often used to motivate the choice of 

estimator. For example:
– Regression model          regression estimator
– Ratio model                   ratio estimator
– Generalized Regression estimation: model estimates 

adjusted to protect against misspecification, e.g. HT 
estimation applied to residuals from the regression 
estimator (e.g. Särndal, Swensson & Wretman 1992).  

• Estimates of standard error are then based on the 
randomization distribution

• This approach is design-based, model-assisted
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Comments
• Calibration approach yields double robustness
• However, relatively easy to achieve double 

robustness in the direct prediction approach, using 
methods like PSPP (see Firth & Bennett 1998)

• Calibration estimates can be questionable from a 
modeling viewpoint

• If model is robust, calibration is unnecessary and 
adds noise
– Recent simulations by Guanyu Zhang support this
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Outline of talk
1. Big picture: design vs. model-based 

inference, weighting vs. prediction.
2. Comparisons of weighting and prediction
3. Weighting and prediction for nonresponse
4. Model-assisted estimation, double 

robustness
5. Variance estimation and inference
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Standard errors, inference
• Should be more emphasis on confidence coverage, 

less on estimating the standard error
• Model-based inferences

– Need to model variance structure carefully
– Bayes: good for small samples

• Sample reuse methods (bootstrap, jackknife, BRR)
– More acceptable to practitioners
– Large sample robustness (compare sandwich 

estimation)
– Inferentially not quite as pure,  but practically useful
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Summary
• Compared design-based and model-based 

approaches to survey weights
• Design-based: “VW beetle” (slow, reliable)
• Model-based: “T-bird” (more racy, needs tuning)
• Personal view: model approach is attractive 

because of flexibility, inferential clarity
• Advocate survey inference under “weak models”
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