DISCUSSION OF

Statistical Analysis Using Combined Data Sources By Ray Chambers

Nathaniel Schenker*
Associate Director for Research and Methodology
National Center for Health Statistics
Centers for Disease Control and Prevention
nschenker@cdc.gov

JPSM Distinguished Lecture
University of Maryland
April 7, 2011

* Thanks to Van Parsons of NCHS for helpful discussions.

CONTENTS

- 1. REASONS FOR COMBINING INFORMATION
- 2. EXAMPLES OF WORK AT NCHS ON COMBINING INFORMATION, PLACED IN CONTEXT OF RAY'S LECTURE
- 3. RANDOM BUT HOPEFULLY INFORMATIVE COMMENTS ON RAY'S EXAMPLES
- 4. CONCLUDING GENERAL POINTS

- 1. REASONS FOR COMBINING INFORMATION (Schenker and Raghunathan 2007, *Stat Med*)
- Want more information in the face of limited resources
 - Cannot conduct a new study for every new problem of interest
- Take advantage of different strengths of different data sources
- Use one data source to supply information lacking in another
- Handle various non-sampling errors; e.g.,
 - Coverage error
 - Errors due to missing data
 - Measurement or response error
- Lower sampling error, i.e., improve precision

2. EXAMPLES OF WORK AT NCHS ON COMBINING INFORMATION, PLACED IN CONTEXT OF RAY'S LECTURE

- A. Using information from the National Health and Nutrition Examination Survey (NHANES) to improve on analyses of self-reported data from the larger National Health Interview Survey (NHIS) (Schenker et al. 2010, Stat Med)
- Motivation: Some self-reported data on health conditions from large, interview-based surveys might not accurately reflect prevalences of conditions
- NHANES asks self-report questions during an interview; obtains clinical measures for many interviewees based on a physical examination
- Fitted "measurement error" models to NHANES data predicting clinical outcome from self-reported answer and covariates

- Applied the fitted models to the NHIS; used multiple imputation to account for variability
- Comparison of 1999-2002 NHIS Estimated Prevalence Rates for Persons of Ages 20 Years and Above: Self-Reported (SR) Data Versus Multiply Imputed Clinical (MICL) Data

Categories		Hypertension		Diabetes		Obesity	
		SR	MICL	SR	MICL	SR	MICL
Education	< HS Grad.	30.9	39.5	11.1	14.2	25.7	30.1
	HS Grad.	22.9	30.1	6.6	8.8	23.5	28.1
	> HS Grad.	16.5	22.8	4.2	6.5	18.7	23.1
Race/ Ethnicity	Hispanic	14.1	20.8	6.9	9.7	23.2	28.2
	N.H. Black	26.7	35.1	8.8	11.3	29.9	34.8
	N.H. White	20.8	27.6	5.6	7.9	19.8	23.1

Note: Certain records were excluded from the data for this study due to missing covariate values. NHANES sample size = 6,110. NHIS sample size = 105,252.

- In the context of Ray's lecture
 - A version of Ray's Example 5 ("Values of 'accurate' zero-one variable Y from a small survey A. Values of 'rough' zero-one approximation X from much larger survey B.")
 - ♦ But not restricted to a zero-one variable
 - Used a "relative" of MIP
 - ◆ Multiple-imputation analysis averages the complete-data inference over the predictive distribution of the missing data given the observed data
 - Research aimed at producing public-use file with builtin adjustment for self-reporting
 - ⇒ Imputation problem rather than MLE problem
 - Comparability a key issue; e.g., sample designs, contexts

- B. Combining Information from two health surveys for small-area estimation (Raghunathan *et al.* 2007, *J Amer Statist Assoc*; Davis *et al.* 2010, *Public Health Rep*)
- Motivation: Interest in local (e.g., county-level) prevalences of cancer risk factors and screening
- Surveys used
 - ♦ Behavioral Risk Factor Surveillance System (BRFSS)
 - + Large; almost all counties in sample
 - Telephone survey
 - ⇒ Non-coverage of non-telephone households; high nonresponse rates
 - **♦ NHIS**
 - + Face-to-face survey
 - ⇒ Includes non-telephone households, which can be identified; higher response rates
 - Smaller; only about 25% of counties in sample

- Used Bayesian methods to combine information from the two surveys
 - Trivariate Fay-Herriot (1979, J Amer Statist Assoc) type of model
 - Approximate posterior distributions obtained via Gibbs sampling
- National Cancer Institute released small-area estimates on-line for 1997-9 and 2000-3 (http://sae.cancer.gov/)
- Current work involves including component for cellphone-only households

 Summaries of Bayesian BRFSS-alone and BRFSS/NHIS county-level estimates of prevalence rates for current smoking among adult males in 2000, by range of telephone non-coverage rates

Range of Telephone	Mean (Standard Deviation) of County-Level Estimates (%)			
Non-Coverage Rates (%)	BRFSS-Alone	BRFSS/NHIS		
< 2	20.6 (3.7)	20.4 (4.4)		
2 – 3	21.1 (3.8)	23.0 (3.7)		
3 – 5	21.9 (4.0)	24.3 (3.9)		
5 – 8	23.0 (4.4)	25.7 (3.9)		
8 – 10	24.1 (4.7)	26.6 (3.8)		
10 – 15	24.4 (4.7)	27.7 (4.1)		
15 – 20	25.4 (4.1)	29.8 (3.8)		
≥ 20	24.1 (5.0)	30.8 (5.8)		

- In the context of Ray's lecture
 - Ray mentioned this as a version of Example 5 ("Values of 'accurate' zero-one variable Y from a small survey A. Values of 'rough' zero-one approximation X from much larger survey B.")
 - More information available in survey A (NHIS) than was available in work of Elliott and Davis (2005, Applied Stat)
 - ⇒ Used "relative" of MIP, i.e., Gibbs sampling
 - Use of Bayesian iterative sampling helped to make the problem tractable
 - Directly maximizing likelihood would have been difficult
 - Again, comparability a key issue; e.g., questions, modes

C. National Center for Health Statistics record linkage program

(http://www.cdc.gov/nchs/data_access/data_linkage_activities.htm)

- Enables researchers to examine factors that influence disability, chronic disease, health care utilization, morbidity, and mortality
- Data being linked to various NCHS surveys
 - Air quality data from the Environmental Protection Agency
 - Death certificate records from the National Death Index
 - Medicare enrollment and claims data from the Centers for Medicare and Medicaid Services
 - Benefit history data from the Social Security Administration

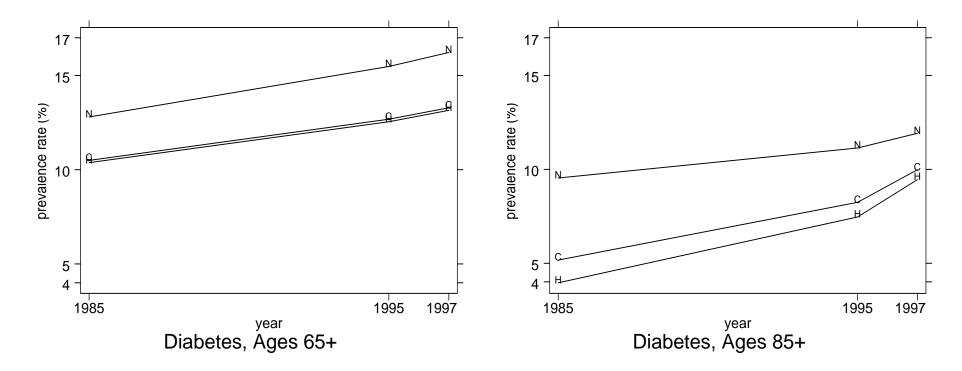
- In the context of Ray's lecture
 - A version of Ray's Example 3 ("Values of Y from register A. Values of X from register B. Registers probabilistically linked. Interest in modeling Y X relationship.")
 - Data can have complex longitudinal structure
 - Records with insufficient information are ineligible for linking
 - ♦ Post-stratification weighting adjustments sometimes used; perhaps calibration extensions could be useful
 - Often interested in both links and non-links (e.g., as deaths and censored cases, respectively)
 - How to estimate probabilities of linkage/non-linkage errors and incorporate into analyses?
 - How to incorporate adjustments into public-use data?

D. Combining information from the NHIS and the National Nursing Home Survey (Schenker et al. 2002, Public Health Rep)

Motivation

- More comprehensive estimates of the prevalences of chronic conditions for the elderly
- Avoid misleading results due to concentrating on a subset of the population
- Estimated distribution into households and nursing homes (from data for 1985, 1995, 1997)
 - Ages 65+: 95% in households, 5% in nursing homes
 - Ages 85+: 79% in households, 21% in nursing homes

 Estimated prevalence rates for diabetes, by age group, 1985, 1995, and 1997
 (H = households; N = nursing homes; C = combined)

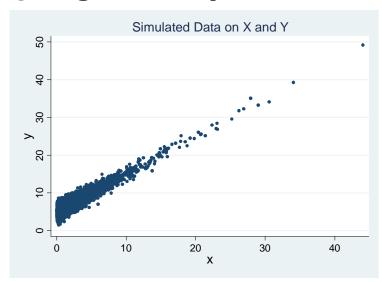


- In the context of Ray's lecture
 - Relatively simple problem
 - ◆ Target populations for the two surveys (nearly) disjoint
 - ◆ Standard design-based methods applicable (with households and nursing homes treated as separate strata)
 - Again, comparability a key issue; e.g., sources of information

3. RANDOM BUT HOPEFULLY INFORMATIVE COMMENTS ON RAY'S EXAMPLES

- Calibrating to Out of Date Constraints (Example 1)
 - Simulation results intuitively reasonable
 - Multivariate extensions desirable
 - Often X (variable for which population mean is known) is categorical
 - How important is it to have a good model?
 - Variance estimation difficult, especially with use of outlier robust method
 - **♦** Use replication methods?

- Combining Survey Data and Marginal Population Information – Comparing MIP with Calibrated Weighting (Example 2)
 - Often only have marginal population information on auxiliary variables (X) and not on outcome variable (Y)
 - Why does MIP method achieve substantial gains even under PPY sampling?
 - ♦ Perhaps in part because of strong relationship between X and Y (correlation \cong 91%)
 - · PPY sampling not very informative, given X?



4. CONCLUDING GENERAL POINTS

- Combining data sources can yield substantial gains, especially when:
 - Data sources have complementary strengths
 - Strong predictors are available
- Analyses with combined data sources can often be viewed as a missing-data problem
 - ⇒ Models and "relatives" of MIP can be very helpful
 - ♦ Model checking is important
- Comparability is crucial
- Combining data sources across organizations can require a great deal of care and cooperation
 - Confidentiality concerns
 - Differing policies and priorities across organizations

REFERENCES

- Davis, W.W., Parsons, V.L., Xie, D., Schenker, N., Town, M., Raghunathan, T.E., and Feuer, E.J. (2010), "State-Based Estimates of Mammography Screening Rates Based on Information from Two Health Surveys," *Public Health Reports*, 125, 567-578.
- Elliott, M.R. and Davis, W.W. (2005), "Obtaining Cancer Risk Factor Prevalence Estimates in Small Areas: Combining Data from Two Surveys, *Applied Statistics*, 54, 595-609.
- Fay, R.E., and Herriot, R.A. (1979), "Estimates of Income for Small Places: An Application of James–Stein Procedures to Census Data," *Journal of the American Statistical Association*, 74, 269–277.
- Raghunathan, T.E., Xie, D., Schenker, N., Parsons, V.L., Davis, W.W., Dodd, K.W., and Feuer, E.J. (2007), "Combining Information From Two Surveys to Estimat2e County-Level Prevalence Rates of Cancer Risk Factors and Screening," *Journal of the American Statistical Association*, 102, 474-486.
- Schenker, N., Gentleman, J.F., Rose, D., Hing, E., and Shimizu, I.M. (2002), "Combining Estimates from Complementary Surveys: A Case Study Using Prevalence Estimates from National Health Surveys of Households and Nursing Homes," *Public Health Reports*, 117, 393-407.
- Schenker, N., and Raghunathan, T.E. (2007), "Combining Information from Multiple Surveys to Enhance Estimation of Measures of Health," *Statistics in Medicine*, 26, 1802-1811.
- Schenker, N., Raghunathan, T.E., and Bondarenko, I. (2010), "Improving on Analyses of Self-Reported Data in a Large-Scale Health Survey by Using Information from an Examination-Based Survey," *Statistics in Medicine*, 9, 533-545.