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What Are ‘The Data’?

The classical perspective - a (random) rectangular window on the
population of interest...

A Messier Real World
Multiple sources of data with varying levels of aggregation

Typically a distorted window on the target population + windows on
related populations



Example 1
e Sample values Y and X for two correlated variables at ¢,

o Register values of X at time ¢,_, available at time 7,
e Focus on estimation of population total of Y at ¢,

Example 2

e Values of Y from register A

e Values of X from register B

e Sample of units from register A linked to register B

e |Interest in modelling Y - X relationship at register level

Example 3
e Values of Y from register A
e Values of X from register B

o Registers probabilistically linked
e |nterest in modelling Y - X relationship at register level



Example 4

e Values of Y and auxiliaries X and C from survey A

e Values of Y and auxiliaries Z and C from survey B

e Marginal estimates for Y based on combined sample required

Example 5
e Values of 'accurate' zero-one variable Y from a small survey A

e Values of 'rough' zero-one approximation X from a much larger
survey B

e Small area estimates of Y required

Example 6

e Values of Y and Z from a large national survey

e Values of X and Z from another, distinct, large national survey

e Values of Y, X and Z from a small, non-representative, third
survey

e National model relating Y, X and Z required



How do we tackle inference using these
complex data sources?



General Approach 1: Calibrated Sample Weighting
Sample weighting is a standard method of survey estimation
Many survey estimation systems use calibrated sample weights

- i.e. they are capable of exactly reproducing known
population quantities

- Typically, these are either totals or means of auxiliary
variables

- Natural way of integrating external information into
survey weights



Closest Calibrated Weighting

Model-Assisted Approach

Deville and Sarndal (1992) - Use calibrated sample weights w. that
are closest to the expansion weights ;' (i.e. the weights that define
the Horvitz-Thompson estimator for the survey variables)

A metric for ‘closeness’ O=(w, -, YQ(w, —-T.)
Minimising O subject to calibration leads to GREG weights

- w, =m Q7 (ZQ7Z,) 2z, -Z/n)

- 7, = matrix of population values of auxiliary variables
- 7., = corresponding matrix of sample values

- Q= positive definite matrix (typically diag(z,v,))



Model-Based Calibration
Yu = ZU:B T €,

Unbiased estimation under this model is a good thing...

E(f,-1,]Z,)=0

Calibration with respect to the auxiliary variables in Z, is
equivalent to unbiasedness with respect to the linear model

E(yU |ZU) — ZUﬁ

E(?y - ty|ZU) = E(W;ys -1y, |ZU) = (W;Zs _I;VZU)ﬁ =0

So calibration is a good thing — provided the linear model
assumption is valid!




Efficient Model-Based Calibration

Royall (1976) - Best linear unbiased predictor (BLUP) of ¢ is
defined by weights of the form
w”=1+H(Z1,-21,)+(I,-HZ,)V'V 1,
I = identity matrix of order n
1,= k-vector of one’s
H = (Z;VSEIZS )_1 Z;Vs;1
VSS VSF
VI'S Vrr

V, o< Var(yU) =

Model unbiasedness < these weights are calibrated on Z,,

r._opt __ rg/
sts _ZUIN



Example 1: Calibrating to Out of Date Constraints

The population marginal information used to define a calibration
constraint is often not ‘exact....

We want on calibrate on X, but do not know the population total of
this variable. Instead, we know the population total of Z, a variable
that is ‘approximately’ the same as X

- Should we try to ‘predict’ the population total of X or just
calibrate to Z?

Y = WAGES (wages bill for a business)

X = EMP (# employees of the business)

Z = Register EMP (# employees of the business at last update of the
business register)
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Preferred Model (A) EY|X)=o0, + B, X
Var(Y|X)= 03X’
- Calculation of Preferred BLUP requires value of ¢, (unknown)
- Use Predicted value of ¢, ?

- Or Substitute ¢, for ¢, ?

Alternative Model (B) EY|Z)=a,+B,Z
Var(Y|Z)= 027>
- Calculation of this Alternative BLUP requires value of ¢,
(known)

e o0, <0,,s0BLUP under (A) expected to be more efficient than
BLUP under (B)

e Values of Y, X and Z available on the sample
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GREG
BLUP

Both

GREG
BLUP

Design-Based Simulations

%RelBias %RelRMSE
Pref Alt Sub Pred Pref Alt Sub Pred

STR1: stratified on Z / equal allocation / across stratum
estimation
044 024 -591 -043 11.32 13.29 12.19 11.93
-5.69| -5.75 -11.50 -6.48 10.03 11.81 13.83 11.27
STR2: stratified on Z / equal allocation / within stratum
estimation
1.07 -0.76 -7.21 -0.85 12.02 14.00 12.49 12.45
PPZ: no stratification / probability proportional to Z
sampling
0.16/ 0.05 -6.34 -1.73 9.98 11.32 1140 11.44
-3.86| -2.64 -9.68 -557 8.42 11.23 11.96 10.57
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Reality?
Overall accuracy is all well and good, but a more practical
requirement is that our estimate should deviate as little as possible
from its preferred value...

- preferred value is estimate defined by calibrating on X

- we want to minimise revision when ¢, does become
available...
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General Approach 2: Likelihood-Based Information Pooling
The data we have
A (confusing) mix of individual Y-values, values of other, related,
variables, summary statistics, metadata (e.g. data definitions),
paradata (e.g. information about how the data were obtained,
sample weights, auxiliary data for the target population), related data
from other surveys and other populations, etc, etc ....

The data we’d like to have (for likelihood inference)

A clean ‘rectangular’ database with unit record data for the target
population and related populations
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The Missing Information Principle

Likelihood-based inference using a ‘messy’ observed dataset d, can

be achieved by carrying out likelihood-based inference using a
larger ‘clean’ dataset d,, but with the sufficient statistics defined by

d, replaced by their expected values given d,

Note

1. It doesn’'t matter what d, is. The only requirement is that d_ (the
data we have) is a subset of d, (the data we would like to have)

2. First developed (Orchard and Woodbury, 1972) for inference
with missing data, and forms basis for EM algorithm (Dempster,
Laird and Rubin, 1977) used widely with missing data
Application to analysis of survey data by Breckling et al (1994)
Basis for data augmentation algorithms used to generate
posterior distributions (Tanner and Wong, 1987)

S
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MIP Identities

Provided the ideal data d, include the available data d, the
available data score sc, for the parameter © of the distribution of d,
Is the conditional expectation, given these data, of the ideal data
score sc, for O, i.e.

sc, = E{dylog f(d,)|d,}=E,(sc,)

Furthermore, the available data information info, for ® is the

conditional expectation, given these data, of the ideal data
information info, for ©® minus the corresponding conditional

variance of the ideal data score sc,, i.e.

info, = E{—0ye log f(d,)|d, } - Var{d, log f(d,)|d, |
= ( info, ) — Var, (SCU )
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Example 2: Combining Survey Data and Marginal Population

Information — Comparing the MIP With Calibrated Weighting

Motivating Scenario

Population U is such that values y. and x, of two scalar variables, Y

and X are stored on separate registers, each of size N. A sample s of
n units from one register is linked to the other via a unigue common
identifier, thus defining n» matched (y,,x.) pairs

Aim To use these linked sample data to estimate the parameters
o, B and o” that characterise the population regression model

y, =+ Bx, + O€,

where g, ~iid N(0,1)
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Extra Information

Register summary data are available. In particular, we know the
population means y, and X, of Y and X...

- OLS estimates are no longer the ‘full information” MLEs

- Can use the MIP to combine this population marginal

information with the survey data to obtain full information
MLEs

- Use E, and Var, to denote conditioning on sample values of Y
and X + population means of these variables
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MIP = components of the available data score function are

1
sc,, =;ZU{ES<y,->—a—ﬁxi}

1
SCy = ?ZUX,- {ES()’,-)— o — ﬂxi}

N 1 2
5C3s =75 2 +264 [ZU{Es(yi)_a_ﬁxi} "‘ZUVG”S(%)}

20

For non-sample i

_ _ _ 1
Vil Yu—-s>Yu-s ~ N{yUs + :B(xi - XU—s)’G2 (1 - )}

N—n
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Leads to an available data score with components

1 _ _
5Cs = ?{Zs(yi —o—Px)+(N - n)(yU_s — 0= ﬁxU—s)}

1 _ _
5Cos = ?{sti(yi —a—px)+(N—n)x,_ (yU—S —o—Px,_, )}

sc, = (n+1) 1 {2 (y,— ot — Bx,)* + (N — n)(yUS—Oc ,BxUS)}

20°

Full information MLEs defined by setting these score components to
zero and solving for «, 8 and &
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Full Information MLEs

. D (x5 =X = V) + x5, = V) + (N =X, Gy, = V)

ﬁfzmle
Zs(xl. -x ) +nx,(x,—X,)+(N-n)x,_(x, ., —X,)
aﬁmle ﬁ zmle
and
~ 1 2
Gﬁmle = I’l+1 s(yi ﬁmle ﬂfmle 1) T (N n)(yU s fmle ﬂﬁmle U- s)
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Pseudo-Likelihood Inference

Kish and Frankel (1974), Binder (1983), Godambe and Thompson
(1986)

f(y,;0) = probability density of population Y values

e If y, were observed, 6 would be estimated by solution of
sc, = d,log f(y,;0)=0

e For any specified value of 6, sc, defines a finite population
parameter (‘census score’), which we can estimate from the

sample data
»  sc, = sample-weighted estimator of sc,

» maximum pseudo-likelihood estimator (MPLE) of 0 is
solution to sc, =0
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Calibration + Pseudo-Likelihood

Assume SRSWOR. There are three calibration constraints

- the population size N
- population mean of X
- population mean of Y

11, Uy, Ux, | ( 0 )
N

we = —1,+N 1y, x. || v, ¥y, vx | |»w-D

’ ’ ’ — —
_Xsln Xsys XSXS _ \xU o xs )

B... {Z wix.(x, —st)} 1zswfalxi()’,- = Vi)

A

acal — y ws ﬁ calst
l A 2
cal =N 2 Wca (yl ﬁcal’xi)



Model-Based Simulations

% relative efficiencies with respect to 5% trimmed RMSE of

MPLE (7 '-weighted)

Parameter | Sampling N=500,n=20| N=1000,n=50| N=5000,n =200
Scheme CAL MIP CAL MIP CAL MIP
o SRS 102.97| 133.97| 127.36| 144.75 143.01| 149.52
PPX 74.51| 477.16 70.40, 502.14 76.36| 622.86
PPY 118.46| 200.88| 143.12| 210.23| 158.57| 221.53
[3 SRS 81.29| 105.89 89.71| 101.95 96.11| 100.54
PPX 27.18| 198.40 26.07| 224.58 27.96| 270.35
PPY 62.77| 109.14 73.07| 110.25 80.85| 116.96
o’ SRS 84.00| 102.34 93.54| 100.12 99.43| 100.08
PPX 57.74| 130.88 70.07| 142.59 81.59| 146.35
PPY 61.58 98.88 71.09| 100.96 87.09, 102.44
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Example 3: Modelling Probability-Linked Data

Fellegi and Sunter (1969) “Record Linkage is a solution to the
problem of recognizing those records in two files which represent

iIdentical persons, objects, or events...”

e Y-register contains values of scalar random variable Y

o X-register contains values of vector random variable X

e Modelling of (¥, X) relationship straightforward given a random
sample of (Y, X) values. But, we do not have such a sample —
instead probabilistic record linkage used to link records from

the two registers

27




Toy Assumptions

Both registers contain N records, with no duplications
Complete linkage: All records on both registers can be linked
Categorical 'blocking' variable Z recorded on both registers

» measured without error on both

» takes Q distinct values ¢=1,2,...,0
» M records in each register with Z=q (so N = Equ)

» Linkage errors can only occur within ‘blocks'

We index the records on the linked data set in exactly the same

way as we index the X-register

28



A Model for Linkage Error
Yo =AY,

A, IS an unknown random permutation matrix of order M, l.e.
entries of A are either zero or one, with a value of one occurring

just once in each row and column

- Ey (A )=E_ (assumed known for the moment)

Non-Informative Linkage A _ly, ‘Xq = E(y,)=E E(y,)
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Exchangeable Linkage Errors

Since linkage process maximises the probability that a ‘declared link’
Is a ‘true link’, correct linkages should be more likely than incorrect

linkages...

e Pr(correct linkage inblock ¢g)= 4,
e Pr(wronglinkage inblock g)=v,

Ay Y, Y
Yo A Y
Eq:EX(Aq): .
Ve 7, Ay
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Estimating Functions with Linked Data

Unbiased estimating function given correctly-linked data

H©6)=>.G,O){y,~ [(x:0)}=3 G, Oy, ~f,X.:0)]

When used with probability-linked data, this becomes

H'(6)=), G,O)1y,—f,(X,;:0)]
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Estimating function is no longer unbiased...

EfH ©)}=Y, G,0){(E,~1,)f,(X,:6,)} =0

A bias-corrected estimating function

H,,(0)=H ©)-Y, G,O){(E,~1,)f,(X:0)}
=3, G, O]y, ~Ef,X,:0)}

Variance estimation: Standard Taylor series approximation,

leading to a plug-in ‘sandwich’ estimator
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Logistic Regression Zqu(ﬁ){yz -E f, (Xq;ﬂ)} =0
M (defines MLE when data are correctly linked): G_(8)=X]

A (leads to unbiased estimator in linear model): G_()=XE’

C (second-order optimal)

G, ()=, {Ey (v, {Var,(v;)} =X;D,(BE.Z, B
where
D, (B)=diag| f(B){1-£(B)}sieq]

3,(B)=Var(y,[X,)

33



Some Simulation Results

Three blocks, M,=1500, M,=300 and M,=200, with

Independent exchangeable linkage errors in each block

Two scenarios

o A, correctly specified (4, =1.0,4,=0.95,4, =0.75)

e Aq estimated by QALq=min{mq_1(mq—O.5),maX(Mq_1,lq)}, with l,
equal to the number of correct links in a random sample of

m, =20 linked records in each of blocks 2 and 3

logit {E ( y,

X, )} =1-5x,, with x, ~ Uniform[0,1]
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Focus on Estimation of Slope Parameter

Estimator

Relative Bias

Relative RMSE

Coverage

Scenario 1: Linkage Probabilities Correctly Specified

Perfect Linkage

1.99

9.27

95.4

M 2.68 12.34 96.1

A 2.68 12.26 96.3

C 2.44 11.20 95.4
Scenario 2: Linkage Probabilities Estimated

Perfect Linkage 2.37 9.87 96.8

M 5.74 20.10 97.6
A 3.31 15.77 96.8
C 2.57 12.53 95.6




Related Results

MIP - Chambers (2009), Chambers et al. (2009)
Sample — Register linkage, with non-linkage + linkage errors
o  Kim and Chambers (2009)

Allowing for linkage errors (Register — Register) in linear mixed
modelling
o Samart and Chambers (2010)

Longitudinal linkage with errors (Sample — multiple Registers)
o  Kim and Chambers (2009)
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The Other Examples

Example 4: Merkouris (JASA, 2004) "Combining independent
regression estimators from multiple surveys”

e Suggests composite GREG estimator: ¢z, “* < +(1-¢)z, 0 *

e Alternative BLUP based on

Ya _ Xy €y 0 _ €4
S — S h) B + S ?
yBs 0 CBs ZBs eBs

e Or perhaps

yAs _ XAs CAs ZAS B 4 eAs 9
Y bs XBS CBs Z, € s




Example 5: Elliot and Davis (Applied Statistics, 2005) "Obtaining
cancer risk factor prevalence estimates in small areas: combining
data from two surveys"

e Base SAE on survey B data, but use survey A data to modify
survey B weights to get rid of the Y-X bias

e Implemented via propensity weight adjustments that ensure
marginal probability that Y =1 in area g is the same for both
survey A and survey B

o Use of propensity-based bias correction increases variances
relative to survey B estimators that do not use this correction.
However, reduction in bias leads to smaller MSE

If it is possible to identify values of X for survey A sample, then this
Is item non-response for Y in survey B. MIP can be applied directly.
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Example 6: Strauss, Carroll, Bortnick, Menkedick & Schultz
(Biometrics, 2001): "Combining data sets to predict the effects of
regulation of environmental lead exposure in housing stock”

Y = log(blood lead concentration) - NHANES, Rochester Study

H = log(environmental exposure) as measured by HUD

G = log(environmental exposure) as measured by Rochester Study
C = exposure variable common to HUD and Rochester Study

Target Model Y=0+PBH+7C+e

Gaussian measurement error model + Rochester/HUD data used to
get estimates of 8 and y. Marginal data on Y from NHANES then

used to estimate «

Complex, but MIP should be applicable ...
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THANK YOU!

40



References

Binder, D.A. (1983). On the variances of asymptotically normal estimators from complex
surveys. International Statistical Review, 51, 279-292.

Breckling, J.U., Chambers, R.L., Dorfman, A.H., Tam, S.M. and Welsh, A.H. (1994).
Maximum likelihood inference from survey data. International Statistical Review, 62,
349 - 363.

Chambers, R. (2009). Regression analysis of probability-linked data. Official Statistics
Research Series, Vol 4, No. 2, Statistics New Zealand, Wellington.
(http://www.statisphere.govt.nz/official-statistics-research/series/vol-4.htm)

Chambers, R., Chipperfield, J., Davis, W. and Kovacevic, M. (2009). Inference based on
estimating equations and probability-linked data. Working Paper 18-09, Centre for
Statistical and Survey Methodology.

Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977). Maximum likelihood from incomplete
data via the EM algorithm (with discussion). Journal of the Royal Statistical Society
Series B, 39, 1-37.

Deville, J.C. and Sarndal, C.E. (1992). Calibration estimators in survey sampling. Journal of
the American Statistical Association, 87, 376-382.

Felligi, I.P. and Sunter, A.B. (1969). A theory for record linkage. Journal of the American
Statistical Association, 64, 1183-1210

41



Godambe, V.P. and Thompson, M.E. (1986). Parameters of super populations and survey
population: their relationship and estimation. International Statistical Review, 54, 37-
59.
Kim, G. and Chambers, R. (2009). Regression analysis under incomplete linkage. Working
Paper 17-09, Centre for Statistical and Survey Methodology.
Kim, G. and Chambers, R. (2010). Regression analysis for longitudinally linked data.
Working Paper 22-10, Centre for Statistical and Survey Methodology.
Kish, L. and Frankel, M.R. (1974). Inference from complex samples (with discussion).
Journal of the Royal Statistical Society, Series B, 36, 1-37.
Orchard, T. and Woodbury, M.A. (1972). A missing information principle: theory and
application. Proc. 6th Berkeley Symp. Math. Statist., 1, 697-715.
Royall, R.M. (1976). The linear least squares prediction approach to two-stage sampling.
Journal of the American Statistical Association}, 71, 657-664.
Samart, K. and Chambers, R. (2010). Fitting linear mixed models using linked data.
Working Paper 18-10, Centre for Statistical and Survey Methodology.
Tanner, M.A. and Wong, W.H. (1987). The calculation of posterior distributions by data
augmentation (with discussion). Journal of the American Statistical Association, 82,
528-550.

42



