
 1 

Statistical Analysis Using Combined Data 
Sources 

 
Ray Chambers 

Centre for Statistical and Survey Methodology 
University of Wollongong 

 
JPSM Presentation, University of Maryland, April 7, 2011 

 
 

    



 2 

What Are ‘The Data’? 
 
 
The classical perspective - a (random) rectangular window on the 
population of interest… 
 
 

A Messier Real World 
 
Multiple sources of data with varying levels of aggregation 
 
Typically a distorted window on the target population + windows on 
related populations 
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Example 1 
• Sample values Y and X for two correlated variables at t1 
• Register values of X at time tk−1   available at time tk  
• Focus on estimation of population total of Y at t1 
 

Example 2 
• Values of Y from register A 
• Values of X from register B 
• Sample of units from register A linked to register B 
• Interest in modelling Y - X relationship at register level 
 

Example 3 
• Values of Y from register A 
• Values of X from register B 
• Registers probabilistically linked  
• Interest in modelling Y - X relationship at register level 
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Example 4 
• Values of Y and auxiliaries X and C from survey A 
• Values of Y and auxiliaries Z and C from survey B 
• Marginal estimates for Y based on combined sample required 
 

Example 5 
• Values of 'accurate' zero-one variable Y from a small survey A 
• Values of 'rough' zero-one approximation X from a much larger 

survey B 
• Small area estimates of Y required 
 

Example 6 
• Values of Y and Z from a large national survey 
• Values of X and Z from another, distinct, large national survey 
• Values of Y, X and Z from a small, non-representative, third 

survey 
• National model relating Y, X and Z required 
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How do we tackle inference using these 

complex data sources? 
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General Approach 1: Calibrated Sample Weighting 
 
Sample weighting is a standard method of survey estimation 
 
Many survey estimation systems use calibrated sample weights 
 

- i.e. they are capable of exactly reproducing known 
population quantities 

 
- Typically, these are either totals or means of auxiliary 

variables 
 

- Natural way of integrating external information into 
survey weights 
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Closest Calibrated Weighting 
 
Model-Assisted Approach 
 
Deville and Särndal (1992) - Use calibrated sample weights wi  that 
are closest to the expansion weights π i

−1 (i.e. the weights that define 
the Horvitz-Thompson estimator for the survey variables) 
 
A metric for ‘closeness’  Q = (ws − π s

−1 ′) Ω(ws − π s
−1) 

Minimising Q subject to calibration leads to GREG weights 
 

- ws = π s
−1 +Ω−1 ′Zs ′ZsΩ

−1Zs( )−1 ( ′ZU1N − ′Zsπ s
−1) 

- ZU  = matrix of population values of auxiliary variables 
- Zs  = corresponding matrix of sample values 
- Ω= positive definite matrix (typically diag π ivi( )) 
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Model-Based Calibration 
 

yU = ZUβ + eU  
 
Unbiased estimation under this model is a good thing... 
 

E t̂y − ty ZU( ) = 0 
 
Calibration with respect to the auxiliary variables in ZU  is 
equivalent to unbiasedness with respect to the linear model 
E(yU ZU ) = ZUβ  
 

E t̂y − ty ZU( ) = E ′wsys − ′1N yU ZU( ) = ′wsZs − ′1NZU( )β = 0 
 
So calibration is a good thing – provided the linear model 
assumption is valid! 
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Efficient Model-Based Calibration 
 
Royall (1976) - Best linear unbiased predictor (BLUP) of ty is 
defined by weights of the form 
 

ws
opt = 1n + ′H ′ZU1N − ′Zs1n( ) + In − ′H ′Zs( )Vss

−1Vsr1N −n  
 

  .. In= identity matrix of order n 
  .. 1k= k-vector of one’s 
  .. H = ′ZsVss

−1Zs( )−1 ′ZsVss
−1 

  .. VU ∝Var yU( ) = Vss Vsr

Vrs Vrr

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 

 
Model unbiasedness ⇔  these weights are calibrated on ZU  
 

′Zsws
opt = ′ZU1N  
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Example 1: Calibrating to Out of Date Constraints 
 
The population marginal information used to define a calibration 
constraint is often not ‘exact’... 
 
We want on calibrate on X, but do not know the population total of 
this variable. Instead, we know the population total of Z, a variable 
that is ‘approximately’ the same as X 
 

- Should we try to ‘predict’ the population total of X or just 
calibrate to Z? 

 
Y = WAGES (wages bill for a business) 
X = EMP (# employees of the business) 
Z = Register EMP (# employees of the business at last update of the 
business register) 
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Sector K1 (N = 1005) 
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Preferred Model (A)   E(Y X) = α X + βXX  
         Var(Y X) = σ X

2 X 2  
 - Calculation of Preferred BLUP requires value of tX  (unknown) 
 - Use Predicted value of tX? 
 - Or Substitute tZ  for tX? 
 
Alternative Model (B)   E(Y Z ) = αZ + βZZ  
         Var(Y Z ) = σ Z

2Z 2  
- Calculation of this Alternative BLUP requires value of tZ  

(known) 
 

 
• σ X

2 < σ Z
2 , so BLUP under (A) expected to be more efficient than 

BLUP under (B) 
• Values of Y, X and Z available on the sample 
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Design-Based Simulations 
 
 %RelBias %RelRMSE 
 Pref Alt Sub Pred Pref Alt Sub Pred 
  

STR1: stratified on Z / equal allocation / across stratum 
estimation 

GREG 0.44 0.24 -5.91 -0.43 11.32 13.29 12.19 11.93 
BLUP -5.69 -5.75 -11.50 -6.48 10.03 11.81 13.83 11.27 
 STR2: stratified on Z / equal allocation / within stratum 

estimation 
Both 1.07 -0.76 -7.21 -0.85 12.02 14.00 12.49 12.45 
 PPZ: no stratification / probability proportional to Z 

sampling 
GREG 0.16 0.05 -6.34 -1.73 9.98 11.32 11.40 11.44 
BLUP -3.86 -2.64 -9.68 -5.57 8.42 11.23 11.96 10.57 
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Reality? 
 
Overall accuracy is all well and good, but a more practical 
requirement is that our estimate should deviate as little as possible 
from its preferred value... 
 
 - preferred value is estimate defined by calibrating on X 
 

- we want to minimise revision when tX  does become 
available... 
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Distributions of %RelDiff for STR1 
  

GREG                                    BLUP 
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 General Approach 2: Likelihood-Based Information Pooling 
 
The data we have 
 
A (confusing) mix of individual Y-values, values of other, related, 
variables, summary statistics, metadata (e.g. data definitions), 
paradata (e.g. information about how the data were obtained, 
sample weights, auxiliary data for the target population), related data 
from other surveys and other populations, etc, etc .... 
 
The data we’d like to have (for likelihood inference) 
 
A clean ‘rectangular’ database with unit record data for the target 
population and related populations 
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The Missing Information Principle 
 
Likelihood-based inference using a ‘messy’ observed dataset ds  can 
be achieved by carrying out likelihood-based inference using a 
larger ‘clean’ dataset dU  but with the sufficient statistics defined by 
dU  replaced by their expected values given ds  
 
Note 
 
1. It doesn’t matter what dU  is. The only requirement is that ds  (the 

data we have) is a subset of dU  (the data we would like to have) 
2. First developed (Orchard and Woodbury, 1972) for inference 

with missing data, and forms basis for EM algorithm (Dempster, 
Laird and Rubin, 1977) used widely with missing data 

3. Application to analysis of survey data by Breckling et al (1994) 
4. Basis for data augmentation algorithms used to generate 

posterior distributions (Tanner and Wong, 1987) 
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MIP Identities 
 
Provided the ideal data dU  include the available data ds , the 
available data score scs for the parameter Θ of the distribution of dU
is the conditional expectation, given these data, of the ideal data 
score scU  for Θ, i.e. 
 

scs = E ∂Θ log f (dU ) ds{ } = Es scU( ) 
 
Furthermore, the available data information infos for Θ is the 
conditional expectation, given these data, of the ideal data 
information infoU  for Θ minus the corresponding conditional 
variance of the ideal data score scU , i.e. 
 

infos = E −∂ΘΘ log f (dU ) ds{ } −Var ∂Θ log f (dU ) ds{ }
= Es infoU( ) −Vars scU( )
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Example 2: Combining Survey Data and Marginal Population 
Information – Comparing the MIP With Calibrated Weighting 

 

Motivating Scenario 
Population U is such that values yi  and xi  of two scalar variables, Y 
and X are stored on separate registers, each of size N. A sample s of 
n units from one register is linked to the other via a unique common 
identifier, thus defining n matched (yi ,xi) pairs 
 
Aim  To use these linked sample data to estimate the parameters 
α , β  and σ 2  that characterise the population regression model 
 

yi =α + βxi +σε i  
 
where ε i ~ iid N (0,1) 
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Extra Information 
 
Register summary data are available. In particular, we know the 
population means yU  and xU  of Y and X... 
 

- OLS estimates are no longer the ‘full information’ MLEs 
 

- Can use the MIP to combine this population marginal 
information with the survey data to obtain full information 
MLEs 

 
- Use Es  and Vars to denote conditioning on sample values of Y 

and X + population means of these variables 
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MIP ⇒  components of the available data score function are 
 

sc1s =
1
σ 2 Es (yi )−α − βxi{ }U∑  

 

sc2s =
1
σ 2 xi Es (yi ) −α − βxi{ }U∑  

 

sc3s = − N
2σ 2 +

1
2σ 4 Es (yi )−α − βxi{ }2U∑ + Vars (yi )U∑⎡

⎣
⎤
⎦ 

 
For non-sample i 
 

 
yi xU − s , yU − s  N yU − s + β(xi − xU − s ),σ

2 1− 1
N − n

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭
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Leads to an available data score with components 
 

sc1s =
1
σ 2 (yi −α − βxi )s∑ + (N − n) yU − s −α − βxU − s( ){ } 

 

sc2s =
1
σ 2 xi (yi −α − βxi )s∑ + (N − n)xU − s yU − s −α − βxU − s( ){ } 

 

sc3s = −
(n +1)
2σ 2 +

1
2σ 4 (yi −α − βxi )

2
s∑ + (N − n) yU − s −α − βxU − s( )2{ } 

 
Full information MLEs defined by setting these score components to 
zero and solving for α , β  and σ 2  
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Full Information MLEs 
 
 

β̂ fimle =
(xi − xs )(yi − ys )s∑ + nxs (ys − yU ) + (N − n)xU − s (yU − s − yU )
(xi − xs )

2
s∑ + nxs (xs − xU ) + (N − n)xU − s (xU − s − xU )

 

 
α̂ fimle = yU − β̂ fimlexU  

and 
 

σ̂ fimle
2 =

1
n +1

yi − α̂ fimle − β̂ fimlexi( )2s∑ + (N − n) yU − s − α̂ fimle − β̂ fimlexU − s( )2  
 



 24 

Pseudo-Likelihood Inference 
 
Kish and Frankel (1974), Binder (1983), Godambe and Thompson 
(1986) 
 
f (yU ;θ ) = probability density of population Y values 

 

• If yU  were observed, θ  would be estimated by solution of 
scU = ∂θ log f (yU ;θ ) = 0  

• For any specified value of θ , scU  defines a finite population 
parameter (‘census score’), which we can estimate from the 
sample data 
 scw  = sample-weighted estimator of scU  
 maximum pseudo-likelihood estimator (MPLE) of θ  is 

solution to scw = 0 
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Calibration + Pseudo-Likelihood 
 
Assume SRSWOR. There are three calibration constraints 
 

 - the population size N 
 - population mean of X 
 - population mean of Y 
 

wcal =
N
n
1n + N 1n ys xs[ ]

′1n1n ′1n ys ′1nxs
′ys1n ′ysys ′ysxs
′xs1n ′xsys ′xsxs

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−1 0
yU − ys
xU − xs

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
 

 

β̂cal = wi
cal xi (xi − xws )s∑{ }−1 wi

cal xi (yi − yws )s∑  
 

α̂ cal = yws − β̂cal xws  
 

σ̂ cal
2 = N −1 wi

cal (yi − α̂ cal − β̂cal xi )
2

s∑  
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Model-Based Simulations 
 

% relative efficiencies with respect to 5% trimmed RMSE of 
MPLE (π −1-weighted) 

 
N = 500, n = 20 N = 1000, n = 50 N = 5000, n = 200 Parameter Sampling 

Scheme CAL MIP CAL MIP CAL MIP 
SRS 102.97 133.97 127.36 144.75 143.01 149.52 
PPX 74.51 477.16 70.40 502.14 76.36 622.86 

α  

PPY 118.46 200.88 143.12 210.23 158.57 221.53 
SRS 81.29 105.89 89.71 101.95 96.11 100.54 
PPX 27.18 198.40 26.07 224.58 27.96 270.35 

β  

PPY 62.77 109.14 73.07 110.25 80.85 116.96 
SRS 84.00 102.34 93.54 100.12 99.43 100.08 
PPX 57.74 130.88 70.07 142.59 81.59 146.35 

σ 2  

PPY 61.58 98.88 71.09 100.96 87.09 102.44 
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Example 3: Modelling Probability-Linked Data 
 

Fellegi and Sunter (1969) “Record Linkage is a solution to the 

problem of recognizing those records in two files which represent 

identical persons, objects, or events...”  
 

• Y-register contains values of scalar random variable Y 

• X-register contains values of vector random variable X 

• Modelling of (Y, X) relationship straightforward given a random 

sample of (Y, X) values. But, we do not have such a sample – 

instead probabilistic record linkage used to link records from 

the two registers 
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Toy Assumptions 
 
• Both registers contain N records, with no duplications  

• Complete linkage: All records on both registers can be linked 

• Categorical 'blocking' variable Z recorded on both registers 

 measured without error on both 

 takes Q distinct values  q = 1,2,…,Q 

 Mq  records in each register with Z = q (so N = Mqq∑ ) 

 Linkage errors can only occur within ‘blocks' 

• We index the records on the linked data set in exactly the same 

way as we index the X-register 
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A Model for Linkage Error 
 

yq
∗ = Aqyq 

 

Aq is an unknown random permutation matrix of order Mq , i.e. 

entries of Aq are either zero or one, with a value of one occurring 

just once in each row and column 
 

- EX (Aq ) = Eq  (assumed known for the moment) 

 

Non-Informative Linkage  Aq ⊥ yq Xq ⇒ EX (yq
∗ ) = EqEX (yq ) 
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Exchangeable Linkage Errors 
 

Since linkage process maximises the probability that a ‘declared link’ 

is a ‘true link’, correct linkages should be more likely than incorrect 
linkages... 
 

•  Pr(correct linkage in block q) = λq  
•  Pr(wrong linkage in block q) = γ q  
 

 

Eq = EX Aq( ) =
λq γ q  γ q

γ q λq  γ q

   
γ q γ q  λq

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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Estimating Functions with Linked Data 
 

Unbiased estimating function given correctly-linked data 

H(θ ) = Gi (θ ) yi − fi (xi;θ ){ }
i=1

N

∑ = Gq (θ ) yq − fq (Xq;θ ){ }q∑  

 

When used with probability-linked data, this becomes 
 

H∗(θ ) = Gq (θ ) yq
∗ − fq (Xq;θ ){ }q∑  
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Estimating function is no longer unbiased... 
 

EX H
∗(θ0 ){ } = Gq (θ0 ) Eq − Iq( ) fq (Xq;θ0 ){ }q∑ ≠ 0 

 

A bias-corrected estimating function 
 

Hadj (θ ) = H
∗(θ )− Gq (θ ) Eq − Iq( ) fq (Xq;θ ){ }q∑

= Gq (θ ) yq
∗ − Eqfq (Xq;θ ){ }q∑

 

 

Variance estimation: Standard Taylor series approximation, 

leading to a plug-in ‘sandwich’ estimator 
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Logistic Regression  Gq (β) yq
∗ − Eqfq (Xq;β){ }q∑ = 0  

 

M (defines MLE when data are correctly linked): Gq (β) = ′Xq 
 

A (leads to unbiased estimator in linear model): Gq (β) = ′Xq ′Eq  
 

C (second-order optimal) 

 

Gq (β) = ∂β EX yq
∗( ){ } VarX yq

∗( ){ }−1 = ′XqDq (β) ′EqΣq
−1(β) 

where 

Dq (β) = diag fi (β) 1− fi (β){ };i ∈q⎡⎣ ⎤⎦ 

Σq (β) =Var yq
∗ Xq( ) 
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Some Simulation Results 
 

• Three blocks, M1 = 1500, M 2 = 300  and M 3 = 200 , with 

independent exchangeable linkage errors in each block 

• Two scenarios 

o λq  correctly specified (λ1 = 1.0, λ2 = 0.95, λ3 = 0.75) 

o λq  estimated by λ̂q = min mq
−1 mq − 0.5( ),max Mq

−1,lq( ){ }, with lq  

equal to the number of correct links in a random sample of 

mq = 20  linked records in each of blocks 2 and 3 

• logit E yi xi( ){ } = 1− 5xi, with  xi Uniform[0,1] 
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Focus on Estimation of Slope Parameter 
 
Estimator Relative Bias Relative RMSE Coverage 

Scenario 1: Linkage Probabilities Correctly Specified 
Perfect Linkage 1.99 9.27 95.4 
Naive -8.91 11.70 73.2 
M 2.68 12.34 96.1 
A 2.68 12.26 96.3 
C 2.44 11.20 95.4 

Scenario 2: Linkage Probabilities Estimated 
Perfect Linkage 2.37 9.87 96.8 
Naive -8.53 11.83 76.0 
M 5.74 20.10 97.6 
A 3.31 15.77 96.8 
C 2.57 12.53 95.6 
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 Related Results 
 

• MIP - Chambers (2009), Chambers et al. (2009) 

• Sample — Register linkage, with non-linkage + linkage errors 

o  Kim and Chambers (2009) 

• Allowing for linkage errors (Register — Register) in linear mixed 

modelling 

o  Samart and Chambers (2010) 

• Longitudinal linkage with errors (Sample — multiple Registers)  
o  Kim and Chambers (2009) 
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The Other Examples 
 
Example 4: Merkouris (JASA, 2004) "Combining independent 
regression estimators from multiple surveys" 
 
• Suggests composite GREG estimator: φt̂Ay

GREG (X ,C ) + (1−φ)t̂By
GREG (Z ,C ) 

• Alternative BLUP based on  

yAs
yBs

⎛

⎝
⎜

⎞

⎠
⎟ =

XAs CAs 0
0 CBs ZBs

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
β +

eAs
eBs

⎛

⎝
⎜

⎞

⎠
⎟ ?

 • Or perhaps 

yAs
yBs

⎛

⎝
⎜

⎞

⎠
⎟ =

XAs CAs ẐAs

X̂Bs CBs ZBs

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
β +

eAs
eBs

⎛

⎝
⎜

⎞

⎠
⎟ ?
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Example 5: Elliot and Davis (Applied Statistics, 2005) "Obtaining 
cancer risk factor prevalence estimates in small areas: combining 
data from two surveys" 
 
• Base SAE on survey B data, but use survey A data to modify 

survey B weights to get rid of the Y-X bias 
• Implemented via propensity weight adjustments that ensure 

marginal probability that Y = 1 in area g  is the same for both 
survey A and survey B 

• Use of propensity-based bias correction increases variances 
relative to survey B estimators that do not use this correction. 
However, reduction in bias leads to smaller MSE 

 
If it is possible to identify values of X for survey A sample, then this 
is item non-response for Y in survey B. MIP can be applied directly. 
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Example 6: Strauss, Carroll, Bortnick, Menkedick & Schultz 
(Biometrics, 2001): "Combining data sets to predict the effects of 
regulation of environmental lead exposure in housing stock" 
 
Y = log(blood lead concentration) - NHANES, Rochester Study 
H = log(environmental exposure) as measured by HUD 
G = log(environmental exposure) as measured by Rochester Study 
C = exposure variable common to HUD and Rochester Study 
 
Target Model  Y =α + βH + γC + e 
 
Gaussian measurement error model + Rochester/HUD data used to 
get estimates of β  and γ . Marginal data on Y from NHANES then 
used to estimate α  
 

Complex, but MIP should be applicable ... 
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THANK YOU! 
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