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“Complete” (Ideal) vs. Observed (Messy) Data

“Complete Data

o “Complete” data dy vs. |
observed data ds: :
o Data with measurement i
error (X vs. X*): last :
month vs. this month
employee count. Ol D’
o Partial Z: “large” area miarssatarafmEaeaban;

IDs vs. small area IDs.
o Non-overlapping
covariates: health - A .
outcomes X vs.
behavioral risk factors W.
o Multiple surveys.
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Missing Information Principle

@ Would like to make inference about
Q(Yl, 2004 YN,Xl, ceey XN) = Q(X,Y) using dU
@ Stuck with making inference about Q(X,Y) using ds
@ Chambers: Use “missing information principle” to obtain
likelihood inference about 6 = 60y = Q(X,Y) using ds by
replacing sufficient statistics S(dy) for Oy by E(S(dy) | ds).
o EM algorithm

o Replace likelihood inference with pseudo-likelihood inferences
to accommodate unequal probability sample designs.
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Missing Information Principle

@ Alternative to calibration: calibration data becomes part of
ds, and replace data in MLE/PMLE score equations with
expected value conditional on calibration totals.

o Chambers shows that this can improve efficiency over
uncalibrated estimators, and avoid bias due to failure of the
implied calibration model.

@ Probabilistic linkage: allows for bias correction in estimating
equations using probabilistic linked datasets.

@ Combining data from multiple surveys using MIP extension of
missing data algorithms.
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Bayesian Survey Inference

Focus on inference about Q(X,Y) using posterior predictive
distribution based on p(Y nobs, Xnobs | ¥, X):

Y, X
p(YnObS7Xnob5 | y,X) = M —
p(y; x)

Jp(Y,X|0)p(6)d6 _
p(y,x)

fP(Ynob57Xnobs | Y, X, 0)p()'7x | 0)p(9)d0 _
p(y; x)

/P(YnobSaxnobs | Yy, X, 0)p(0 | y,x)dO

(Ericson 1969; Scott 1977; Rubin 1987).
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Bayesian Survey Inference vs. MIP

@ Both Bayesian survey inference and the missing information
principle focus on prediction of missing elements in the
population conditional on observed data.

@ Bayesian approach obtains full posterior predictive distribution
of Q(X,Y), rather than point estimate and asymptotic
normality assumptions

o EM vs. MCMC (“stochastic EM")

@ Bayesian survey inference should yield similar inference to
MIP, at least in large samples.
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Applications of Bayesian Survey Inference

o (Item level) missing data (Rubin 1987, Little and Rubin 2002).

e Weight trimming (Elliott and Little 2000, Elliott 2007, 2008,
2009).

@ Disclosure risk (Raghunathan et al. 2003, Reither 2005).

e Combining data from multiple surveys (Raghunathan et al.
2007, Davis et al. 2010).
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Combining Data from Multiple Complex Sample Design

Surveys (Dong 2011)

@ Motivating example: obtain
inference about Q(Y, X, W)

when only two of the three Survey?
variables are contained in
any one survey. Smrvers

@ Surveys use different designs
and data collection methods
— different sampling and
nonsampling error properties

o Cannot simply pool data
for analysis.
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Combining Data from Multiple Complex Sample Design

Surveys (Dong 2011)

@ Borrow from disclosure risk
literature to generate
synthetic populations using
data from each survey.

o Each generated population
“uncomplexes” sample
design to create what is
effectively a simple random
sample.
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Combining Data from Multiple Complex Sample Design

Surveys (Dong 2011)

@ Pool data and use standard |
imputation approaches to fill
in missing variables for the ‘
data from each survey. :
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Combining Estimates from Synthetic Populations

Generated by A Single Survey (Raghunathan et al. 2003)

@ Suppose we have synthetic populations P;, I =1,..., L
generated from P(Y obs, Xnobs | ¥, X)-

e Estimate @ = Q(X,Y) with @, = L~} > Qi, where Q is an
(asymptotically) unbiased estimator of Q generated from P;.

o var(Q ) =T, =(1+ L_llBL — Uy, where
BL=(L-1)"13(Q — Q)& :QL)T is
between-imputation variance and Uy = L~ 3", U is the
average of the within-imputation variances U, of Q.

e T, =~ By if generated sample large enough that U, can be
ignored and number of synthetics L large enough that 1/L can
be ignored

@ Need a bit more care if synthetic populations are generated
from different surveys, since posterior predictive distribution
models from different survey may not be the same.
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Combining Estimates from Synthetic Populations

Generated by Multiple Surveys (Dong et al. 2011)

@ Generate synthetic populations P;, | =1, ..., L for surveys
s=1,....5 from P(Y3 ps: X5 ops | Y5, X°).

nobs»
e Account for complex sample design features; regard synthetic
data as SRS from population.
e No need to actually generate entire population, just sample
large enough that between-imputation variance swamps
within-imputation variance.
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Combining Estimates from Synthetic Populations

Generated by Multiple Surveys (Dong et al. 2011)

@ For each survey, obtain 5i as the synthetic population point
estimator of Q for survey s and B; as its variance. If

o Q° ~ N(Q, U9)
o @ |y*,x° ~ N(Q°, B), then
e As L — oo, posterior predictive distribution of @ approximately
D D — Z:Q./B _ 1
N(Qoo, Boo), Qoo = 5= Boo = 5y
e t approximation available for small L.
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Combining Estimates from Synthetic Populations

Generated by Multiple Surveys: Extension to Missing Data
(Dong et al. 2011)

@ Synthesize, then impute.

@ Imputation for missing components in each survey obtained by
stacking P/, s = 1,..., S and treating as SRS from population.

o Multiply impute m =1, ..., M complete datasets for each of
the L synthetic populations.

@ Reseparate into the surveys and obtain Q> for each of the
multiply imputed synthetic datasets.

° 6SL =Lt 2157\4,/ for 5;/1,/ =M1y Q.
5 -1 —S —S —1 _ s =8
° B = % Z/(QM,/_QL)2+1+AL” Z/(M—l) ! Em( m/_QM,/)2
@ Combine survey-level predictive distributions as in the
complete data case on previous slide.
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Generating Synthetic Populations from Posterior Predictive

Distribution

Derivation of predictive distribution ignores sampling indicator /;
this requires (Rubin 1987)
@ Unconfounded sampling
o P(1|Y,X)=P(l]y,x)
e Independence of | and (Y pops, Xnobs) given y.x, and 6
o P(Y nobs, Xnobs | ¥, %, 1,0) = P(Y nobs, Xnobs | ¥, %, 6)

Maintaining these assumption requires:
@ Probability sample

e Model p(Y, X) attentive to design features and robust enough
to sufficiently capture all aspects of the distribution of Y, X
relevant to Q(Y, X).
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Non-parametric Posterior Predictive Distribution

Generate the /th synthetic population as follows:

@ Account for stratification and clustering by drawing a Bayesian
bootstrap sample of the clusters within each stratum.

e For stratum h with C, clusters, draw C;, — 1 random variables
from U(0,1) and order ay,..,ac,—1; sample Cp clusters with
replacement with probability a. — a._1, where ag = 0 and
ac, = 1.

@ Use finite population Bayesian bootstrap Polya urn scheme
(Lo 1988) extended to account for selection weights (Cohen
1997) to generate unobserved elements of the population
within each cluster ¢ in stratum h:

o Draw a sample of size N, — nep by drawing (yk, xx) from the
ith unit among the n., sampled elements with probability
N::fnlcjl(i’_lr)(ﬁcf\'l;fzzh) where [; x_1 is the number of bootstrap
draws of the /th unit among the previous k — 1 bootstrap

selections.
o Repeat F times for each boostrapped cluster.
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Application: Distribution of Insurance Coverage

o Estimating 2006 insurance coverage using Behavior Risk
Factor Surveillance Survey (BRFSS), National Health
Interview Survey (NHIS), Medical Expenditure Panel Survey
(MEPS).

@ NHIS and MEPS split insured into private and public: impute
BRFSS using gender, race, region, education, age, and
income.

@ Generate synthetic populations using non-parametric Bayesian
bootstrap method.
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Application: Distribution of Insurance Coverage

Type of coverage NHIS BRFSS MEPS Combined
(n=76K) (n=356K) (n=34K)
Point Est.  Private 74.6 73.4 75.9
(%) Public 7.5 13.3 8.6
None 17.8 15.4 13.2 15.3
SE Private .50 .53 .23
Public .25 .38 .16
None 43 .18 .38 .16
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The Role of the Model

@ Bayesian bootstrap is very robust: in most settings it doesn't
provide efficiency gains over design-based methods, but
“combining data” situations are likely exceptions.

@ In application, some issues arise:

o BRFSS estimator may be biased (low response rate,
telephone-only sampling frame).

o MEPS is a subsample of previous year's NHIS.

e More traditional modeling approaches needed?

@ MIP uses E {Oylogf(d,) | ds}

e Target quantity of interest if model is misspecified? Solution
to population score equation? Can we think of
0=0n=Q(X,Y)?

o Use estimating equation methodology to obtain consistent
estimators of 6.
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