
Incorporating Level of Effort Paradata in 
Nonresponse Adjustments 

Paul Biemer
RTI International

University of North Carolina – Chapel Hill



2

Acknowledgements

• Patrick Chen, RTI International
• Kevin Wang, RTI International
• SAMHSA

Disclaimer: The views expressed in this presentation do not necessarily reflect the official policies 
of the Department of Health and Human Services; nor does mention of trade names, commercial 
practices, or organizations imply endorsement by the U.S. Government



3

Outline of this talk

• Brief review of the literature
• Discussion of some issues in using LOE paradata
• Simple callback model for dichotomous variables
• Estimation via the EM algorithm
• Testing and adjusting for nonignorable nonresponse 

(NINR) bias
• Application to the National Survey on Drug Use and 

Health (NSDUH)
• Summary and Future Directions
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about response propensity?
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a Function of Number of Call Attempts
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• Determine which variables are most subject to NR 
bias.

• Determine the severity of nonignorable nonresponse 
(NINR) bias in estimates adjusted for ignorable NR.

• Monitor NR bias during data collection for optimal 
reallocation of NR conversion resources.

• Adjust for NR bias in the absence of auxiliary data 
used as adjustment controls

• Adjust for NINR bias

How can these data be used to inform the 
nonresponse (NR) bias mitigation process?
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What prior research has been conducted on 
the use of callback data for NR adjustment?
Early papers
• H.O. Hartley (1946); Politz-Simmons (1949); 

Simmons (1954) – Based upon retrospective reports 
of availability.  Crude but sometimes effective.

• Remaining literature is divided between two 
approaches
– Regression modeling
– Probability modeling
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Modeling Approaches

Regression Modeling 
• (Alho, 1990; Anido-Valdez, 2000; Wood,White & 

Hotopf, 2006) 
• Models response propensity at each attempt as a 

function of partially missing and fully observed 
predictors

• Inverse predicted propensities are used as weight 
adjustments

• Uses an modified conditional likelihood method of 
esitmation. 

• Provides weights that adjust for NINR
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Modeling Approaches (cont’d)

Probability Modeling 
• (Drew-Fuller,1980; Potthoff, Manton, Woodbury, 

1993; Biemer & Link, 2007)
• Models the probability of observation in each cell of 

the data summary table
• Simultaneously estimates the prevalence of the 

cross-classifications variables along with the NR 
parameters

• Partially observed variables completed via the EM 
algorithm

• Estimates NR propensity components that can be 
used to build weights that adjust for NINR
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What results have been achieved?

• Little has been done to address real-world 
complexities.
– Biemer/Link approach was a step in this direction

• Models specifying contact probabilities only have 
limited applicability for interview surveys.

• No rigorous evaluation of bias reduction capability
– Validity of the approaches demonstrated on artificial 

populations or from model fit statistics.

• Studies have shown that NR bias reduction can be 
dramatic albeit at the cost of increasing variance.
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Typical Interview Survey Data Summary 
Table for a Binary Response Variable, y

NC (noncontact)

……………

A (truncated)

a
……………

2

1

Censored NCRef/Oth NRInterviewedCall Attempt
1y = 2y = 1 or 2y = 1 or 2y =

111n 211n 12n+ 13n+

121n 221n 22n+ 23n+

1 1an 2 1an 2an+ 3an+

1 1An 2 1An 2An+ 3An+

1 or 2y =

1cn+

2cn+

acn+

Acn+
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Censored case (prematurely) finalized as NC cases

NC (noncontact)

……………

A (truncated)

a
……………

2

1

Censored NCRef/Oth NRInterviewedCall Attempt
1y = 2y = 1 or 2y = 1 or 2y =

111n 211n 12n+ 13n+

121n 221n 22n+ 23n+

1 1an 2 1an 2an+ 3an+

1 1An 2 1An 2An+ 3An+

1 or 2y =

1cn+

2cn+

acn+

Acn+
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Truncated case completed after the maximum number 
of attempts specified by the model; treated as NCs

NC (noncontact)

……………

A (max att.)

a
……………

2

1

Censored NCRef/Oth NRInterviewedCall Attempt
1y = 2y = 1 or 2y = 1 or 2y =

111n 211n 12n+ 13n+

121n 221n 22n+ 23n+

1 1an 2 1an 2an+ 3an+

1 1An 2 1An 2An+ 3An+

1 or 2y =

1cn+

2cn+

acn+

Acn+
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NC cases at attempt a are available at 
attempt a+1. 

NC (noncontact)

……………

A (truncated)

a
……………

2

1

Censored NCRef/Oth NRInterviewedCall Attempt
1y = 2y = 1 or 2y = 1 or 2y =

111n 211n 12n+ 13n+

121n 221n 22n+ 23n+

1 1an 2 1an 2an+ 3an+

1 1An 2 1An 2An+ 3An+

1 or 2y =

1cn+

2cn+

acn+

Acn+
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What are some issues that arise in 
callback modeling?

• What constitutes an attempt?
– Definition varies by mode of data collection
– E.g., is several calls within several hours 1 attempt or multiple 

attempts
– Use the definition that is most predictive of the model parameters

• What constitutes a contact?
– First contact with anyone in the HH?
– First contact with sample person or guardian?
– The contact that determines final disposition of the case (i.e., 

interview, refused, other)
– Other?
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• How should censoring and truncation be modeled?
– If censoring mechanism is independent of y, it can be ignored.
– However, standard errors of model parameters will be larger.

• How should weighting be handled in the modeling 
process?
– Unweighted data – e.g., Pr(ith unit responds | ith unit is sampled)
– Weight for probabilities of selection
– Weight for selection probs and NR using ignorable NR models

• What callback model should be used?
– Regression model does not adapt well to these complexities
– Probability model adapts well but has other shortcomings
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……………

A (truncated)

a
……………

2

1

Censored NCRef/Oth NRInterviewedCall Attempt
1y = 2y = 1 or 2y = 1 or 2y =

111n 211n 12n+

121n 221n 22n+

1 1an 2 1an 2an+

1 1An 2 1An 2An+

1cn+

2cn+

acn+

Acn+

Essential Idea:  Model missing data 
mechanism and …
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…complete the table.

Interviewed Refusals/Other NR Censored
Attempt y=1 y=2 y=1 y=2 y=1 y=2

1 n111 n211 n112 n212 n113 n213

… … … … … … …

a n1a1 n2a1 n1a2 n2a2 n1a3 n2a3

… … … … … … …

A n1A1 n2A1 n1A2 n2A2 n1A3 n2A3

Totals n1+1 n2+1 n1+2 n2+2 n1+3 n2+3
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This will yield a model unbiased estimate of 
prevalence.

Interviewed Refusals/Other NR Censored
Attempt y=1 y=2 y=1 y=2 y=1 y=2

1 n111 n211 n112 n212 n113 n213

… … … … … … …

a n1a1 n2a1 n1a2 n2a2 n1a3 n2a3

… … … … … … …

A n1A1 n2A1 n1A2 n2A2 n1A3 n2A3

Totals n1+1 n2+1 n1+2 n2+2 n1+3 n2+3

1 1 1 2 1 3ˆ n n n
n

π + + ++ +
=Estimate prevalence:
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Basic Call-back Model for Binary Response

 call attempt; 
 1,...,
 call outcome; 

=1 for interview, 
=2 for refusal/other nr
=3 for noncontact

a
A

b

=
=
=

Notation

Let
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Basic Call-back Model for Binary Response

,

,

,

 true prevalence
Pr(contact at attempt | )

Pr( 1) Pr(interview| , contact at attempt )

1 Pr( 2) Pr(refusal/oth NR| , contact at attempt )

Pr(censored at attempt )

y a

y a

y a

a y

b y a

b y a

a

π
α

β

β

δ

=
=

= = =

− = = =

=
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Simple Call-back Model for Binary Response

Assume:
,

,

1 2 1 2

 for all 

 for 

, , , , ,  and 

y a y

y a y

a

a

α α

β β

π α α β β δ

=

=

For a binary response variable, y, this results in six 
parameters:
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Interviewed Refusals/
Other NR

Censored 
NCs 

y=1 y=2 y is unknown y is unknown

Cell freq

Prob

2 1an1 1an 3an+2an+1, ,a A= …

, 

1, ,a A= …

Cell Frequencies and Probabilities

1 1aπ 2 1aπ 2

1 2 2 2

a

a a

π
π π
+

= +
3

1 3 2 3

a

a a

π
π π
+

= +
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Probabilities for Basic Model
1 1

1 1 1 1 1(1 ) [ (1 ) ]a a
aπ δ π α α β− −= − −

1 1
2 1 2 2 2(1 ) [(1 )(1 ) ]a a

aπ δ π α α β− −= − − −

1 1
2 1 1 1

1
2 2 2

(1 ) [ (1 ) (1 )

(1 )(1 ) (1 )]

a a
a

a

π δ π α α β

π α α β

− −
+

−

= − − −

+ − − −

1
3 1 2(1 ) [ (1 ) (1 )(1 ) ]a a a

aπ δ δ π α π α−
+ = − − + − −

Interview: y=1

Interview: y=2

Refused

NC – Censored
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EM Algorithm to Estimate Parameters

[ ] [ ]
[ ] [ ]1 2 2 2
1 2 2 2 2 2[ ] [ ] [ ] [ ]

1 2 2 2 1 2 2 2

[ ] [ ]
[ ] [ ]1 3 2 3
1 3 3 1 3 3[ ] [ ] [ ] [ ]

1 3 2 3 1 3 2 3

ˆ ˆˆ ˆ,
ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ,
ˆ ˆ ˆ ˆ

t t
t ta a
a a a at t t t

a a a a

t t
t ta a
a a a at t t t

a a a a

n n n n

n n n n

π π
π π π π

π π
π π π π

+ +

+ +

= =
+ +

= =
+ +

Refusals

NC-censored

E-step at tth iteration
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[ ] [ ]
1 1 1 2 2 1 2 2[ 1] [ 1]

1 2[ ] [ ] [ ] [ ]
1 1 1 2 1 3 2 1 2 2 2 3

1 1 2 1[ 1] [ 1]
1 2[ ] [ ]

1 1 1 2 2 1 2 2

3

ˆ ˆ( ) ( )
ˆ ˆ;

ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ;
ˆ ˆ( ) ( )

ˆ

t t
a a a at ta a

t t t t
a a a a a aa a

a at ta a
t t

a a a aa a

aa

n n n n
a n n n a n n n

n n
n n n n

n
n

α α

β β

δ

+ +

+ +

+

+ +
= =

+ + + +

= =
+ +

=

∑ ∑
∑ ∑
∑ ∑

∑ ∑

∑

M-step at (t+1)th iteration

EM Algorithm to Estimate Parameters
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Estimate of Prevalence

[ ] [ ]
1 1 1 2 1 3[ 1]

[ ] [ ]
1 2 3

ˆ ˆ( )
ˆ ˆ( )

t t
a a at a

t t
ya ya yay a

n n n
n n n

π + + +
=

+ +
∑

∑ ∑
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Tests of Ignorability

0 1 2 1 2

1 1 2 1 2 1 1 2 1 2

                :  and =    
:  and =   or  :   or  

H
H H

α α β β
α α β β α α β β

=
′≠ ≠ ≠

Test statistics

2 2 2
0 1 1( ) ( )G M G M χ− ∼ 2 2 2

0 1 2( ) ( )G M G M χ′− ∼

2

,

( ) 2 ln
ˆ

c
c

c c M

nG M n
n

= ∑
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Tests of Ignorability

0 1 2 1 2

1 1 2 1 2 1 1 2 1 2

                :  and =    
:  and =   or  :   or  

H
H H

α α β β
α α β β α α β β

=
′≠ ≠ ≠

Test statistics

2 2 2
0 1 1( ) ( )G M G M χ− ∼ 2 2 2

0 1 2( ) ( )G M G M χ′ − ∼

2

,

( ) 2 ln
ˆ

c
c

c c M

nG M n
n

= ∑
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Indicators of Nonignorable Bias Based on M1

Designed to measure the magnitude of the NR bias
prior to, during and after traditional NR weighting

2 2 2
0 1

2 2
0 1
2

0

2 2
0 0 1 1

2
0 0

( ) ( )

( ) ( )
( )

( ) / ( ) /
( ) /

G G M G M

G M G MR
G M

G M df G M dfD
G M df

Δ = −

−
=

−
=



30

Indicators of Nonignorable Bias Based on M1

Designed to measure the magnitude of the NR bias
prior to, during and after traditional NR weighting

2 2 2
0 1

2 2
0 1
2

0

2 2
0 1 1 0

2
0 0

( ) ( )

( ) ( )
( )

( ) / ( ) /
( ) /

G G M G M

G M G MR
G M

G M df G M dfD
G M df

Δ = −

−
=

−
=
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Application – National Survey on Drug Use 
and Health

• NSDUH is quarterly survey to estimate the 
prevalence of drug, alcohol and tobacco use in U.S.

• 170,000 households are screened and 67,500 
interviews are conducted per year

• Response rates are approx. 90% (screener) and 78% 
(interview)

• Only screener respondents are used in our analysis 
(i.e., adjustments pertain only to interview survey 
nonresponse)
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Current NSDUH NR Adjustment

• Uses the GEM (generalized exponential model), a 
logistic regression response propensity adjustment

• Incorporates 13 grouping variables and their 
interactions including a number of state specific 
components 

• This model will be referred to as the GEM model
• We also considered the GEM+ model obtained by 

simply adding the LOE variable to the GEM model.
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Definitions

• Call attempt – attempt to contact recorded by I’er; 
similar to call slots (morning, afternoon, evening of 
same day)

• Contact attempt – first call attempt resulting in face to 
face contact with the sample member

• Contact outcomes – interview, refused, other NR and 
NC (censored)
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Some Research Questions Addressed in this 
Research

• Will the test for ignorability be rejected for key 
estimates?  

• Is the probability callback model a valid approach 
remove the NINR bias?

• Which model works best?
• How do the probability model results compare with 

simply adding the LOE variable (i.e., number of call 
attempts) to the GEM model?
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Some Callback Models Considered
Model
Mod0 – Homogeneous contact and 

interview probabilities (GEM)

Mod1 – Homogeneous contact probs
Heterogeneous interview probs

Mod2 – Same as Mod1 except contact
probs change after attempt 1

Mod3 – Homogeneous contact probs
Heterogeneous interview probs

Mod4 – Heterogeneous contact and 
interview probs 

1 2

1 2

=  
and 
α α α

β β β
=

= =

1 2 1 2,  and α α β β β= =

11 12 21 22

1 2

, , ,  
and 
α α α α

β β β= =

1 2 1 2=  and ,α α α β β=

1 2 1 2,  and ,α α β β



36

Our Approach

• Fit the standard GEM model to obtain estimated 
response propensities for each unit
– To create NINR bias for some variable x*, x* was omitted 

from the GEM model.
– e.g.,                                    makes x* an ignored variable in 

the estimation of response propensity, pi

– Choices for x* included age, race and sex

• Divide the sample into 20 strata based upon the 
propensity, pi

• Compare the estimates of the missing variable, x*, 
across the NINR adjustment models

*logit( )i xp −′= X β
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Tests of Ignorability



38

Tests of H0 vs. H1

Ignored Variable, x* df

Age 174 4 9.5 Rejected

Race 172 4 9.5 Rejected

Sex 62 1 3.8 Rejected

Alcohol Use 60 1 3.8 Rejected

Marijuana Use 135 1 3.8 Rejected

Cocaine Use 165 1 3.8 Rejected

2GΔ yα α=2
dfχ
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Comparison of Estimates
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Problems with Heterogeneous β’s Models

• Heterogeneous outcome probability models (e.g., 
Mod3 and Mod4) performed quite poorly

• Based upon a simulation study, behavior of these 
models appears consistent with callback data 
recording errors
– Suppose some proportion of callbacks are not recorded
– It can be shown that estimates of the callback model 

parameters are biased.
– Biases were generally low for the homogeneous β’s models
– Biases were quite large for the heterogeneous β’s models –

particularly for small values of π
• These models will not be considered further in the 

results.
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Mod2 Provides for Change in Contact 
Probabilities after Initial Attempt

Typical Callback Data Profile
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Average Bias for Four Models:  AGE
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Average Bias for Four Models:  SEX

Propensity Stratum
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Estimates of Past Year Marijuana Use 
and        (Rescaled) by Propensity Group 2GΔ

Propensity Stratum

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25

GEMS
GEMS+
MOD1
MOD2
ΔG2



48

Bias in GEM and GEM+ Adjustments 
Using Mod2 as the Gold Standard
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Summary and 
Future Directions
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Summary

• NINR indexes performed well in these tests
• Can be applied post-survey weighting as a check on 

residual NINR bias
• Models with heterogeneous contact probabilities 

performed well
• Models with heterogeneous interview probabilities did 

not perform well
• Suspect the problem is errors in the callback data
• Surprisingly, the GEM+ model was also effective at 

eliminating NINR bias.
– It outperformed the probability callback models for some 

estimates

2χ
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Future Directions

Model Improvements
• Alternative definitions for call attempt, contact attempt 

and contact outcome
• Expand application of the models to other variables
• Consider modifications to field procedures for 

recording of call attempts
Other Applications
• Optimization of fieldwork (e.g., responsive design)
• Representivity measures for international surveys
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