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                                              ABSTRACT 
                                              
A large part of sample survey theory has been directly motivated by practical problems 
encountered in the design and analysis of sample surveys. On the other hand, sample 
survey theory has influenced practice, often leading to significant improvements. This 
paper will examine this interplay over the past 60 years or so. Examples where new 
theory is needed or where theory exists but is not used will also be presented. 
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              1.    SOME EARLY LANDMARK CONTRIBUTIONS: 1920-1970 
 
This section gives an account of some early landmark contributions to sample survey 
theory and methods that have greatly influenced the practice. The Norwegian statistician 
A. N. Kier (1897) is perhaps the first to promote sampling ( or what was then called “the 
representative method”) over complete enumeration, although the oldest reference to 
sampling can be traced back to the great Indian epic Mahabharata (Hacking, 1975, p.7). 
In the representative method the sample should mirror the parent finite population and 
this may be achieved either by balanced sampling through purposive selection or by 
random sampling. The representative method was used in Russia as early as 1900 
(Zarkovic, 1956) and Wright conducted sample surveys in the United States around the 
same period using this method. By the 1920’s, the representative method was widely 
used, and the International Statistical Institute played a prominent role by creating a 
committee in 1924 to report on the representative method. This committee’s 1925 report 
discussed theoretical and practical aspects of the random sampling method. Bowley’s 
(1926) contribution to this report includes his fundamental work on stratified random 
sampling with proportional allocation, leading to a representative sample with equal 
inclusion probabilities. Hubback (1927) recognized the need for random sampling in crop 
surveys: “The only way in which a satisfactory estimate can be found is by as close an 
approximation to random sampling as the circumstances permit, since that not only gets 
rid of the personal limitations of the experimenter but also makes it possible to say what 
is the probability with which the results of a given number of samples will be within a 
given range from the mean. To put this into definite language, it should be possible to 
find out how many samples will be required to secure that the odds are at least 20:1 on 
the mean of the samples within one maund of the true mean”. This statement contains 
two important observations on random sampling: (1). It avoids personal biases in sample 
selection. (2). Sample size can be determined to satisfy a specified margin of  



                                                       
 
error apart from a chance of 1 in 20. Mahalanobis (1946b) remarked that R. A. Fisher’s 
fundamental work at Rothamsted Experimental Station on design of experiments was 
influenced directly by Hubback (1927).  
 
Neyman’s (1934) classic landmark paper laid the theoretical foundations to the 
probability sampling (or design-based) approach to inference from survey samples. He 
showed, both theoretically and with practical examples, that stratified random sampling is 
preferable to balanced sampling because the latter can perform poorly if the underlying 
model assumptions are violated. Neyman also introduced the ideas of efficiency and 
optimal allocation in his theory of stratified random sampling without replacement by 
relaxing the condition of equal inclusion probabilities. By generalizing the Markov 
theorem on least squares estimation, Neyman proved that the stratified mean , 

hh hst yWy ∑= , is the best estimator of the population mean, hh hYWY ∑= , in the linear 

class of unbiased estimators of the form hii hih hb ybWy ∑∑= , where hh yW ,  and hY  are 

the thh − stratum weight, sample mean and population mean ( ),...,1 Lh = , and hib  is a 
constant associated with the item value hiy′ observed on the thi −  sample draw 
( hni ,...,1= ) in the thh − stratum. Optimal allocation ),...,( 1 Lnn of the total sample size, 
n , was obtained by minimizing the variance of sty  subject to nn

h h =∑ ; an earlier proof 
of Neyman allocation by Tschuprow (1923) was later discovered. Neyman also proposed 
inference from larger samples based on normal theory confidence intervals such that the 
frequency of errors in the confidence statements based on all possible stratified random 
samples that could be drawn does not exceed the limit prescribed in advance “whatever 
the unknown properties of the population”.  Any method of sampling that satisfies the 
above frequency statement was called “representative”. Note that Huback (1927) earlier 
alluded to the frequency statement associated with the confidence interval. Neyman’s 
final contribution to the theory of sample surveys (Neyman, 1938) studied two-phase 
sampling for stratification and derived the optimal first phase and second phase sample 
sizes, n′  and n , by minimizing the variance of the estimator subject to a given cost 

,nccnC +′′=  where the second phase cost per unit, ,c  is large relative to the first phase 
cost per unit, c′ . 
 
The 1930’s saw a rapid growth in demand for information, and the advantages of 
probability sampling in terms of greater scope, reduced cost, greater speed and model-
free features were soon recognized, leading to an increase in the number and type of 
surveys taken by probability sampling and covering large populations. Neyman’s 
approach was almost universally accepted by practicing survey statisticians. Moreover, it 
inspired various important extensions, mostly motivated by practical and efficiency 
considerations. Cochran’s (1939) landmark paper contains several important results: the 
use of ANOVA to estimate the gain in efficiency due to stratification, estimation of 
variance components in two-stage sampling for future studies on similar material, choice 
of sampling unit, regression estimation under two-phase sampling and effect of errors in 
strata sizes. This paper also introduced the super-population concept:  “The finite  



                                                               
 
population should itself be regarded as a random sample from some infinite population”. 
It is interesting to note that Cochran at that time was critical of the traditional fixed 
population concept: “ Further, it is far removed from reality to regard the population as a 
fixed batch of known numbers”. Cochran (1940) introduced ratio estimation for sample 
surveys, although an early use of the ratio estimator dates back to Laplace (1820). In 
another landmark paper (Cochran, 1942), he developed the theory of regression 
estimation. He derived the conditional variance of the usual regression estimator for a 
fixed sample and also a sample estimator of this variance, assuming a linear regression 
model exy ++= βα , where e has mean zero and constant variance in arrays in which x 
is fixed. He also noted that the regression estimator remains (model) unbiased under non-
random sampling, provided the assumed linear regression model is correct. He derived 
the average bias under model deviations (in particular, quadratic regression) for simple 
random sampling as the sample size n  increased. Cochran then extended his results to 
weighted regression and derived the now well-known optimality result for the ratio 
estimator, namely it is a “ best unbiased linear estimate if the mean value and variance 
both change proportional to x ”.  The latter model is called the ratio model in the current 
literature. Cochran (1946) compared the expected (or anticipated) variance under a super-
population model to study the relative efficiency of alternative probability sampling 
strategies (design and estimator) analytically. This paper stimulated much subsequent 
research on the use of super-population models in the choice of probability sampling 
strategies, and also for model-dependent and model- assisted inferences (see Section 2).  
 
In India, Mahalanobis made pioneering contributions to sampling by formulating cost and 
variance functions for the design of surveys. His 1944 landmark paper (Mahalanobis, 
1944) provides deep theoretical results on the efficient design of sample surveys and their 
practical applications, in particular to crop acreage and yield surveys. The well-known 
optimal allocation in stratified random sampling with cost per unit varying across strata is 
obtained as a special case of his general theory. As early as 1937, Mahalanobis used 
multi-stage designs for crop yield surveys with villages, grids within villages, plots 
within grids and cuts of different sizes and shapes as sampling units in the four stages of 
sampling (Murthy, 1964). He also used a two-phase sampling design for estimating the 
yield of cinchona bark. He was instrumental in establishing the National Sample Survey 
(NSS) of India, the largest multi-subject continuing survey operation with full-time staff 
using personal interviews for socioeconomic surveys and physical measurements for crop 
surveys. Several eminent survey statisticians, including D.B. Lahiri and M. N. Murthy, 
were associated with the NSS. 
 
P. V. Sukhatme, who studied under Neyman, also made pioneering contributions to the 
design and analysis of large-scale agricultural surveys in India, using stratified multi-
stage sampling. Begining in 1942-43 he developed efficient designs for the conduct of 
nationwide surveys on wheat and rice crops and demonstrated high degree of precision 
for state estimates and reasonable margin of error for district estimates. Sukhatme’s 
approach differed from that of Mahalanobis who used very small plots for crop cutting 
employing ad hoc staff of investigators. Sukhatme (1947) and Sukhatme and Panse  



                                                              
 
(1951) showed that the use of a small plot might give biased estimates due to the 
tendency of placing boundary plants inside the plot when there is doubt. They also 
pointed out that the use of ad hoc staff of investigators, moving rapidly from place to 
place, forces the plot measurements on only those sample fields that are ready for harvest 
on the date of the visit, thus violating the principle of random sampling. Sukhatme’s 
solution was to use large plots to avoid boundary bias and to entrust crop-cutting work to 
the local revenue or agricultural agency in a State.  
 
Survey statisticians at the U. S. Census Bureau, under the leadership of Morris Hansen, 
William Hurwitz, William Madow and Joseph Waksberg, made fundamental 
contributions to sample survey theory and practice during the period 1940-70, and many 
of those methods are still widely used in practice. Hansen and Hurwitz (1943) developed 
the basic theory of stratified two-stage sampling with one primary sampling unit (PSU) 
within each stratum drawn with probability proportional to size measure (PPS sampling) 
and then sub-sampled at a rate that ensures self-weighting (equal overall probabilities of 
selection) within strata. This approach provides approximately equal interviewer work 
loads which is desirable in terms of field operations. It also leads to significant variance 
reduction by controlling the variability arising from unequal PSU sizes without actually 
stratifying by size and thus allowing stratification on other variables to reduce the 
variance. On the other hand, workloads can vary widely if the PSUs are selected by 
simple random sampling and then sub-sampled at the same rate within each stratum. PPS 
sampling of PSUs is now widely used in the design of large-scale surveys, but two or 
more PSUs are selected without replacement from each stratum such that the PSU 
inclusion probabilities are proportional to size measures (see Section 4).  
 
Many large-scale surveys are repeated over time, such as the monthly Canadian Labour 
Force Survey (LFS) and the U. S. Current Population Survey (CPS), with partial 
replacement of ultimate units (also called rotation sampling). For example, in the LFS the 
sample of households is divided into six rotation groups (panels) and a rotation group 
remains in the sample for six consecutive months and then drops out of the sample, thus 
giving five-sixth overlap between two consecutive months. Yates (1949) and Patterson 
(1950), following the initial work of Jessen (1942) for sampling on two occasions with 
partial replacement of units, provided the theoretical foundations for design and 
estimation of repeated surveys, and demonstrated the efficiency gains for level and 
change estimation by taking advantage of past data. Hansen et al. (1955) developed 
simpler estimators, called K-composite estimators, applicable to stratified multi-stage 
designs with PPS sampling in the first stage.  Rao and Graham (1964) studied optimal 
replacement policies for the K-composite estimators. Various extensions have also been 
proposed. Composite estimators have been used in the CPS and other continuing large 
scale surveys. Only recently, the Canadian LFS adopted composite estimation, called 
regression composite estimation, that makes use of sample information from previous 
months and that can be implemented with a regression weights software (see Section 3). 
Keyfitz (1951) proposed an ingenious method of switching to better size measures in 
continuing surveys based on the latest census counts. His method ensures that the  



                                                                 
 
probability of overlap with the previous sample of PSUs is maximized, thus reducing the 
field costs and at the same time achieving increased efficiency by using the better size 
measures in PPS sampling.  The Canadian LFS and other continuing surveys have used 
the Keyfitz method. 
 
The focus of research prior to 1950 was on estimating population totals and means for the 
whole population and large planned sub-populations, such as states or provinces. 
However, the users are also interested in totals and means for unplanned sub-populations 
(also called domains) such as age-sex groups within a province, and parameters other 
than totals and means such as median and other quantiles, for example median income. 
Hartley (1959) developed a simple, unified theory for domain estimation applicable to 
any design, requiring only the standard formulae for the estimator of total and its variance 
estimator, denoted in the operator notation as )(ˆ yY and )(yv respectively. He introduced 
two synthetic variables ij y  and ij a which take the values iy  and 1 respectively if the 
unit i  belongs to domain j  and equal to 0 otherwise. The estimators of domain total 

)( yYY jj =  and domain size )( aYN jj = are then simply obtained from the formulae for 

)(ˆ yY and )(yv by replacing iy  by ij y  and ij a  respectively. Similarly, estimators of 
domain means and domain differences and their variance estimators are obtained from 
the basic formulae for )(ˆ yY and ).(yv  Durbin (1968) also obtained similar results. 
Domain estimation is now routinely done, using Hartley’s ingenious method.  
 
For inference on quantiles, Woodruff (1952) proposed a simple and ingenious method of 
getting a )1( α− -level confidence interval under general sampling designs, using only the 
estimated distribution function and its standard error (see Lohr’s(1999) book, pp.311-3). 
Note that the latter are simply obtained from the formulae for a total by changing y to an 
indicator variable. By equating the Woodruff interval to a normal theory interval on the 
quantile, a simple formula for the standard error of the thp −  quantile estimator may also 

be obtained as half the length of the interval divided by the upper 
2
α -point of standard 

N(0,1) distribution which equals 1.96 if α =0.05 (Rao and Wu, 1987; Francisco and 
Fuller, 1991). A surprising property of the Woodruff interval is that it performs well even 
when p is small or large and sample size is moderate (Sitter and Wu, 2001). 
  
The importance of measurement errors was realized as early as 1940’s. Mahalanobis’ 
(1946a) influential paper developed the technique of interpenetrating sub-samples (called 
replicated sampling by Deming, 1960). This method was extensively used in large-scale 
sample surveys in India for assessing both sampling and measurement errors. The sample 
is drawn in the form of two or more independent sub-samples according to the same 
sampling design such that each sub-sample provides a valid estimate of the total or mean. 
The sub-samples are assigned to different interviewers (or teams) which leads to a valid 
estimate of the total variance that takes proper account of the correlated response  



                                                              
 
variance component due to interviewers. Interpenetrating sub-samples increase travel 
costs of interviewers, but they can be reduced through modifictions of interviewer 
assignments. Hansen et al. (1951) and Sukhatme and Seth (1952) developed basic 
theories under additive measurement error models, and decomposed the total variance 
into sampling variance, simple response variance and correlated response variance. The 
correlated response variance due to interviewers was shown to be of the order 1−k  
regardless of the sample size, where k  is the number of interviewers. As a result, it can 
dominate the total variance if k  is not large. The 1950 U.S. Census interviewer variance 
study showed that this component was indeed large for small areas. As a result, self-
enumeration was introduced in the 1960 U.S. Census to reduce this component of the 
variance. This is indeed a success story of theory influencing practice.  
 
Yet another early milestone in sample survey methods is the concept of design effect 
(DEFF) due to Leslie Kish (see Kish, 1965, section 8.2). The design effect is defined as 
the ratio of the actual variance of a statistic under the specified design to the variance that 
would be obtained under simple random sampling of the same size. This concept is 
especially useful in the presentation and modeling of sampling errors, and also in the 
analysis of complex survey data involving clustering and unequal probabilities of 
selection (see Section 5).  
 
                                         2. INFERENTIAL ISSUES 
 
2.1 Unified design-based framework 
 
The development of early sampling theory progressed more or less inductively, although 
Neyman (1934) studied best linear unbiased estimation for stratified random sampling. 
Strategies (design and estimation) that appeared reasonable were entertained and relative 
properties were carefully studied by analytical and /or empirical methods, mainly through 
comparisons of mean squared errors, and sometimes also by comparing anticipated mean 
squared errors or variances under plausible super-population models, as noted in Section 
1.  Unbiased estimation under a given design was not insisted upon because it “often 
results in much larger mean squared error than necessary” (Hansen et al 1983). Instead, 
design consistency was deemed necessary for large samples. Classical text books by 
Cochran (1953), Hansen et al (1953), Sukhatme (1954) and Yates (1949), based on the 
above approach, greatly influenced survey practice. Yet, academic statisticians paid little 
attention to traditional sampling theory, possibly because it lacked a formal theoretical 
framework and not integrated with main stream statistical theory. Graduate courses in 
sampling theory were not even offered by several prestigious statistics departments in 
North America.  
 
 Formal theoretical frameworks and approaches to integrating sampling theory with main 
stream statistical inference were initiated in the 1950s under a somewhat idealistic set-up 
that focussed on sampling errors assuming the absence of measurement or response errors 
and non-response. Horvitz and Thompson (1952) made a basic contribution to sampling  



                                                                   
 
with arbitrary probabilities of selection by formulating three subclasses of linear design-
unbiased estimators of a total Y  that include the Markov class studied by Neyman as one 
of the subclasses. Another subclass with design weight id  attached to a sample unit i and 
depending only on i  admitted the well-known estimator with weight inversely 
proportional to the inclusion probability iπ  as the only unbiased estimator. Narain (1951) 
also discovered this estimator, so it should be called Narain-Horvitz-Thompson (NHT) 
estimator rather than HT estimator as commonly known. For simple random sampling, 
the sample mean is the best linear unbiased estimator (BLUE) of the population mean in 
the three subclasses, but this is not sufficient to claim that the sample mean is the best in 
the class of all possible linear unbiased estimators. Godambe (1955) proposed a general 
class of linear unbiased estimators of a total Y by recognizing the sample data as 

}),,{( siyi i ∈ and by letting the weight depend on the sample unit i as well as on the other 
units in the sample s , that is, the weight is of the form )(sdi . He then established that the 
BLUE does not exist in the general class  
 
                                          isi i ysdY )(ˆ ∑∈

= ,                  (1) 
 
even under simple random sampling. This important negative theoretical result was 
largely overlooked for about 10 years. Godambe also established a positive result by 
relating y  to a size measure x  using a super-population regression model through origin 
with error variance proportional to 2x , and then showing that the NHT estimator under 
any fixed sample size design with iπ  proportional to ix  minimizes the anticipated 
variance in the unbiased class (1). This result clearly shows the conditions on the design 
for the use of NHT estimator but unfortunately some theoretical criteria were later 
advanced in the sampling literature to claim that the NHT estimator should be used for 
any sampling design. Rao (1966) recognized the limitations of the NHT estimator in the 
context of surveys with PPS sampling and multiple characteristics. Here the NHT 
estimator will be very inefficient when a characteristic y  is unrelated or weakly related 
to the size measure x (such as poultry count y and farm size x  in a farm survey). Rao 
proposed efficient alternative estimators for such cases that ignore the NHT weights. In a 
well-known example of circus elephants, Basu (1970) constructed a ‘bad’ design with iy  
unrelated to iπ  and demonstrated that the NHT estimator leads to absurd estimates which 
prompted the famous main stream Bayesian statistician Dennis Lindley to even conclude 
that this counterexample destroys the design-based sample survey theory (Lindley, 1996). 
This is rather unfortunate because NHT and Godambe clearly stated the conditions on the 
design for a proper use of the NHT estimator, and Rao (1966) and Hajek (1971) proposed 
alternative estimators to deal with multiple characteristics and bad designs, respectively. 
Moreover, a ‘good’ design in the Basu example would have taken advantage of the past 
census weights of elephants x which are highly correlated with the current weights y .  
 
                                                               



                                                                
 
 
Attempts were also made to integrate sample survey theory with mainstream statistical 
inference via likelihood function. Godambe (1966) showed that the likelihood function 
from the sample data }),,{( siyi i ∈ , regarding the −N vector of unknown −y values as 
the parameter, provides no information on the unobserved sample values and hence on 
the total Y . This uninformative feature of the likelihood function is due to the label 
property that treats the N  population units as essentially N  post-strata. A way out of this 
difficulty is to ignore some aspects of the sample data to make the sample non-unique 
and thus arrive at an informative likelihood function (Hartley and Rao, 1968; Royall, 
1968). For example, under simple random sampling, suppressing the labels i  and 
regarding the data as }),,{( siyi i ∈  in the absence of information relating i  to iy , leads 
to the sample mean as the maximum likelihood estimator of the population mean. Note 
that iy  may be a vector that includes auxiliary variables with known totals. In the latter 
case, Hartley and Rao (1968) showed that the maximum likelihood estimator under 
simple random sampling is approximately equal to the traditional regression estimator of 
the total. This paper was the first to show how to incorporate known auxiliary population 
totals in a likelihood framework. For stratified random sampling, labels within strata are 
ignored but not strata labels because of known strata differences. The resulting maximum 
likelihood estimator is approximately equal to a pseudo-optimal linear regression 
estimator when auxiliary variables with known totals are available. The latter estimator 
has some good conditional design-based properties (see Section 2.4).  The focus of 
Hartley and Rao (1968) was on point estimation of a total, but the likelihood approach in 
fact has much wider scope in sampling, including the estimation of distribution functions 
and quantiles and the construction of likelihood ratio based confidence intervals (see 
Section 7.1). The Hartley-Rao non-parametric likelihood approach was discovered 
independently twenty years later (Owen, 1988) in the main stream statistical inference 
under the name “empirical likelihood” which has attracted a good deal of attention, 
including its application to various sampling problems. So in a sense the integration 
efforts with main stream statistics were partially successful. Owen’s (2002) book presents 
a thorough account of empirical likelihood theory and its applications.  
 
 
2.2 Model-dependent approach 
 
The model-dependent approach to inference assumes that the population structure obeys 
a specified super-population model. The distribution induced by the assumed model 
provides inferences referring to the particular sample of units s  that has been drawn. 
Such conditional inferences are more relevant and appealing than repeated sampling 
inferences. But model-dependent strategies can perform poorly in large samples when the 
model is not correctly specified; even small deviations from the assumed model that are 
not easily detectable through model checking methods can cause serious problems. For 
example, consider the often-used ratio model when an auxiliary variable x with known 
total X is also measured in the sample: 



 
                                                                    
 
                         Nixy iii ,...,1; =+= εβ          (2) 
where the iε  are independent random variables with zero mean and variance proportional 
to ix . Assuming the model holds for the sample, that is, no sample selection bias, the best 
linear model-unbiased predictor of the total Y  is given by the ratio estimator Xxy )/(  
regardless of the sample design. This estimator is not design consistent unless the design 
is self-weighting, for example, stratified random sampling with proportional allocation. 
As a result, it can perform very poorly in large samples under non-self-weighting designs 
even if the deviations from the model are small. Hansen et al. (1983) demonstrated the 
poor performance under repeated sampling set-up, using a stratified random sampling 
design with near optimal sample allocation (commonly used to handle highly skewed 
populations). Rao (1996) used the same design to demonstrate poor performance under a 
conditional framework relevant to the model-dependent approach (Royall and 
Cumberland, 1981). Nevertheless, model-dependent approaches can play a vital role in 
small area estimation where the sample size in a small area (or domain) can be very small 
or even zero, see Section 6.   
 
Brewer (1963) first proposed the model-dependent approach in the context of the ratio 
model (2).  Royall (1970) and his collaborators made a systematic study of this approach.  
Valliant, Dorfman and Royall (2000) give a comprehensive account of the theory, 
including estimation of the (conditional) model variance of the estimator which varies 
with s , for example, under the ratio model (2) the model variance depends on the sample 
mean sx . It is interesting to note that balanced sampling through purposive selection 
appears in the model-dependent approach in the context of protection again incorrect 
specification of the model (Royall and Herson, 1973).  
 
 
2.3 Model-assisted approach 
 
Model-assisted approach attempts to combine the desirable features of design-based and 
model-dependent methods. It entertains only design-consistent estimators of the total 
Y that are also model unbiased under the assumed “working” model. For example, under 
the ratio model (2), a model-assisted estimator of Y for a specified probability sampling 
design is given by the ratio estimator =rŶ XXY NHTNHT )ˆ/ˆ( which is design consistent 
regardless of the assumed model. Hansen et al. (1983) used this estimator for their 
stratified design to demonstrate its superior performance over the model dependent 
estimator Xxy )/( . For variance estimation, the model-assisted approach uses estimators 
that are consistent for the design variance of the estimator and at the same time model 
unbiased for the model variance. However, at the end the inferences are design-based 
because the model used is only a “working” model and may not hold.                             
 
For the ratio estimator rŶ  the variance estimator is given by  



 
                                                              
 
                  s )()ˆ/()ˆ( 22 evXXY NHTr = ,       (3) 
 
where in the operator notation )(ev is obtained from )(yv  by changing iy to the residuals 

iNHTNHTii xXYye )ˆ/ˆ(−= . This variance estimator is asymptotically equivalent to a 
customary linearization variance estimator )(ev , but it reflects the fact that the 
information in the sample varies with NHTX̂ : larger values lead to smaller variability and 
smaller values to larger variability. The resulting normal pivotal leads to valid model-
dependent inferences under the assumed model (unlike the use of )(ev in the pivotal) and 
at the same time protects against model deviations in the sense of providing 
asymptotically valid design-based inferences.  Note that the pivotal is asymptotically 
equivalent to 2/1)]~(/[)~(ˆ eveY  with iii xXYye )/(~ −= . If the deviations from the model 
are not large, then the skewness in the residuals ie~  will be small even if iy  and ix are 
highly skewed, and normal confidence intervals will perform well. On the other hand, in 
the latter case the normal intervals based on NHTŶ and its standard error may perform 
poorly under repeated sampling even for fairly large samples because the pivotal depends 
on the skewness of the iy . Therefore, the population structure does matter in design-
based inferences contrary to the claims of Neyman (1934), Hansen et al. (1983) and 
others. Rao et al. (2003) considered the simple linear regression estimator under two-
phase simple random sampling with x  only observed in the first phase. They 
demonstrated that the coverage performance of the associated normal intervals can be 
poor even for moderately large second phase samples if the true underlying model that 
generated the population deviated significantly from the linear regression model (for 
example, a quadratic regression of y  on x ) and the skewness of x  is large. In this case, 
since the first phase x -values will be observed, a proper model-assisted approach would 
use a multiple linear regression estimator with x  and 2xz =  as the auxiliary variables. 
Note that for single phase sampling such a model-assisted estimator cannot be 
implemented if only the total X  is known since the estimator depends on the population 
total of z . 
 
Sarndal et al. (1992) provide a comprehensive account of the model-assisted apporach to 
estimating the total Y of a variable y under the working linear regression model  
 
                                    =iy iix εβ +′ ; Ni ,...,1=           (4) 
 
with mean zero, uncorrelated errors iε  and model variance 22)( iiim qV σσε ==  where 
the iq are known constants and the x -vectors have known totals X ( the population values 

Nxx ,...,1  may not be known). Under this set-up, the model-assisted approach leads to the 
generalized regression (GREG) estimator  
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i
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iNHTNHTgr yswXXBYY ∑
∈

=−′+=     (5) 

where  
 
                           )/(ˆˆ 11

iiis i qyxTB ∑ −−= π                                (6) 
 
with iiis i qxxT /ˆ 1 ′= ∑ −π is a weighted regression coefficient, and 1)()( −= iii sgsw π  with 

iiNHTi qxTXXsg /ˆ)ˆ(1)( 1−′−+= , known as “g-weights”. Note that the GREG estimator 

(5) can also be written as NHTUi i Ey ˆˆ +∑∈
, where Bxy ii

ˆˆ ′= is the predictor of iy  under the 

working model and NHTÊ is the NHT estimator of the total prediction error 

∑∈
=

Ui ieE with iii yye ˆ−= . This representation shows the role of the working model in 
the model-assisted approach. The GREG estimator (5) is design-consistent as well as 
model-unbiased under the working model (4). Moreover, it is nearly “optimal” in the 
sense of minimizing the anticipated MSE (model expectation of the design MSE) under 
the working model provided the inclusion probability, iπ , proportional to the model 
standard deviation iσ .  However, in surveys with multiple variables of interest, the model 
variance may vary across variables and one must use a general-purpose design such as 
the design with inclusion probabilities proportional to sizes. In such cases, the optimality 
result no longer holds even if the same vector ix  is used for all the variables iy  in the 
working model.  
 
The GREG estimator simplifies to the ‘projection’ estimator is i yswBX )(ˆ ∑=′  with 

iii qxTXsg /ˆ)( 1−′=  if the model variance 2
iσ is proportional to ixλ′  for some λ . The 

ratio estimator is obtained as a special case of the projection estimator by letting ii xq = , 

leading to HTi XXsg ˆ/)( = . Note that the GREG estimator (5) requires only the 
population totals X  and not necessarily the individual population values ix . This is very 
useful because the auxiliary population totals are often ascertained from external sources 
such as demographic projections of age and sex counts. Also, it ensures consistency with 
the known totals X in the sense of Xxsw is i =∑ )( . Because of this property, GREG is 
also a calibration estimator. 
 
Suppose there are p variables of interest, say )()1( ,..., pyy , and we want to use the model-
assisted approach to estimate the corresponding population totals )()1( ,..., pYY . Also, 
suppose that the working model for )( jy  is of the form (4) but requires possibly different 
x-vector )( jx  with known total )( jX  for each pj ,...,1= : 
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j ,...,1,)()( =+ εβ            (7) 
 
In this case, the −g weights depend on j  and in turn the final weights )(swi also depend 
on .j  In practice, it is often desirable to use a single set of final weights for all the p  
variables to ensure internal consistency of figures when aggregated over different 
variables. This property can be achieved only by enlarging the −x vector in the model (7) 
to accommodate all the variables )( jy , say x~  with known total X  and then using the 
working model  

                         )()()( ~ j
i

j
i

j
i xy εβ +′=  , Ni ,...,1=          (8)  

 
However, the resulting weighted regression coefficients could become unstable due to 
possible multicolinearity in the enlarged set of auxiliary variables. As a result, the GREG 
estimator of )( jY  under model (8) is less efficient compared to the GREG estimator under 
model (7). Moreover, some of the resulting final weights, say )(~ swi , may not satisfy 
range restrictions by taking either values smaller than 1 (including negative values) or 
very large positive values. A possible solution to handle this problem is to use a 
generalized ridge regression estimator of )( jY  that is model-assisted under the enlarged 
model (Chambers, 1996; Rao and Singh, 1997). 
 
For variance estimation, the model-assisted approach attempts to used design-consistent 
variance estimators that are also model-unbiased (at least for large samples) for the 
conditional model variance of the GREG estimator. Denoting the variance estimator of 
the NHT estimator of Y as )(yv in an operator notation, a simple Taylor linearization 
variance estimator satisfying the above property is given by )(gev , where )(gev is 
obtained by changing iy  to ii esg )(  in the formula for )(yv ; see Sarndal et al. (1989). 
 
In the above discussion, we have assumed a working linear regression model for all the 
variables )( jy . But in practice a linear regression model may not provide a good fit for 
some of the −y variables of interest, for example, a binary variable. In the latter case, 
logistic regression provides a suitable working model. A general working model that 
covers logistic regression is of the form )()( βiim xhyE ′= = iμ , where (.)h  could be non-
linear; model (5) is a special case with aah =)( . A model-assisted estimator of the total 
under the general working model is the difference estimator is iU iNHTY μπμ ˆˆˆ 1∑∑ −−+ , 

where iμ̂ = )ˆ( βixh ′  and β̂  is an estimator of the model parameter .β  It reduces to the 
GREG estimator (5) if aah =)( . This difference estimator is nearly optimal if the 
inclusion probability iπ  is proportional to iσ , where 2

iσ  denotes the model variance, 
)( im yV . 

 



                                                                 
 
GREG estimators have become popular among users because many of the commonly 
used estimators may be obtained as special cases of (5) by suitable specifications of ix  
and iq . A Generalized Estimation System (GES) based on GREG has been developed at 
Statistics Canada.  
 
Kott (2005) has proposed an alternative paradigm to inference, called randomization-
assisted model-based approach, which attempts to focus on model-based inference 
assisted by randomization (or repeated sampling). The definition of anticipated variance 
is reversed to randomization-expected model variance of an estimator, but it is identical 
to the customary anticipated variance when the working model holds for the sample, as 
assumed in the paper. As a result, the choices of estimator and variance estimator are 
often similar to those under the model-assisted approach. However, Kott argues that the 
motivation is clearer and “ the approach proposed here for variance estimation leads to 
logically coherent treatment of finite population and small-sample adjustments when 
needed”.  
 
2.4 Conditional design-based approach 
 
A conditional design-based approach has also been proposed. This approach attempts to 
combine the conditional features of the model-dependent approach with the model-free 
features of the design-based approach. It allows us to restrict the reference set of samples 
to a “relevant” subset of all possible samples specified by the design. Conditionally valid 
inferences are obtained in the sense that the conditional bias ratio (i.e., the ratio of 
conditional bias to conditional standard error) goes to zero as the sample size increases. 
Approximately 100( α−1 )% of the realized confidence intervals in repeated sampling 
from the conditional set will contain the unknown total Y .  
 
Holt and Smith (1979) provide compelling arguments in favour of conditional design 
based inference, even though the discussion was confined to one-way post-stratification 
of a simple random sample in which case it is natural to make inferences conditional on 
the realized strata sample sizes. Rao (1992, 1994) and Casady and Valliant (1993) studied 
conditional inference when only the auxiliary total X  is known from external sources. In 
the latter case, conditioning on the NHT estimator NHTX̂ may be reasonable because it is 

“approximately” an ancillary statistic when X  is known and the difference XX NHT −ˆ  

provides a measure of imbalance in the realized sample. Conditioning on NHTX̂  leads to 
the “optimal” linear regression estimator which has the same form as the GREG 
estimator (5) with B̂ given by (6) replaced by the estimated optimal value optB̂  of the 

regression coefficient which involves the estimated covariance of NHTŶ  and NHTX̂ and the 

estimated variance of NHTX̂ . This optimal estimator leads to conditionally valid design-
based inferences and model-unbiased under the working model (4). It is also a calibration 
estimator depending only on the total X and it can be expressed as isi i ysw )(~∑∈

with  



                                                               
 
weights )(~)(~ sgdsw iii = and the calibration factor )(~ sgi depending only on the total 
X and the sample x -values. It works well for stratified random sampling (commonly 
used in establishment surveys). However, optB̂ can become unstable in the case of 
stratified multistage sampling unless the number of sample clusters minus the number of 
strata is fairly large. GREG estimator does not require the latter condition but it can 
perform poorly in terms of conditional bias ratio and conditional coverage rates, as shown 
by Rao (1996). The unbiased NHT estimator can be very bad conditionally unless the 
design ensures that measure of imbalance as defined above is small. For example, in the 
Hansen et al. (1983) design based on efficient x -stratification, the imbalance is small and 
the NHT estimator indeed performed well conditionally.                                                                                    
 
Tille (1998) proposed an NHT estimator of the total Y based on approximate conditional 
inclusion probabilities given NHTX̂ . His method also leads to conditionally valid 
inferences, but the estimator is not calibrated to X unlike the “optimal” linear regression 
estimator. Fuller (2002) suggested a calibrated GREG version.                                                 
 
I believe practitioners should pay more attention to conditional aspects of design-based 
inference and seriously consider the new methods that have been proposed.  
 
Kalton (2002) has given compelling arguments for favouring design-based approaches 
(possibly model-assisted and/or conditional) for inference on finite population descriptive 
parameters. Smith (1994) named design-based inference as “procedural inference” and 
argued that procedural inference is the correct approach for surveys in the public domain.  
 
                             3. CALIBRATION ESTIMATORS 
 
Calibration weights )(swi  that ensure consistency with user-specified auxiliary totals 
X are obtained by adjusting the design weights 1−= iid π  to satisfy the benchmark 
constraints Xxsw isi i =∑∈

)( . Estimators that use calibration weights are called 

calibration estimators and they use a single set of weights )}({ swi for all the variables of 
interest. We have noted in section 2.4 that the model-assisted GREG estimator is a 
calibration estimator, but a calibration estimator may not be model-assisted in the sense it 
could be model-biased under a working model (4) unless the −x variables in the model 
exactly match the variables corresponding to the user-specified totals. For example, 
suppose the working model suggested by the data is a quadratic in a scalar variable x  
while the user-specified total is only its total X . The resulting calibration estimator can 
perform poorly even in fairly large samples, as noted in section 2.3, unlike the model-
assisted GREG estimator based on the working quadratic model that requires the 
population total of the quadratic variables 2

ix  in addition to X .  
 



Post-stratification has been extensively used in practice to ensure consistency with known 
cell counts corresponding to a post-stratification variable, for example counts in different 
age groups ascertained from external sources such as demographic projections. The 
resulting post-stratified estimator is a calibration estimator. Calibration estimators that 
ensure consistency with known marginal counts of two or more post-stratification 
variables have also been employed in practice; in particular raking ratio estimators that  
                                                                    
 
are obtained by benchmarking to the marginal counts in turn until convergence is 
approximately achieved, typically in four or less iterations. Raking ratio weights 

)(swi are always positive. In the past, Statistics Canada used raking ratio estimators in the 
Canadian Census to ensure consistency of 2B-item estimators with known 2A-item 
counts. In the context of the Canadian Census, Brackstone and Rao (1979) studied the 
efficiency of raking ratio estimators and also derived Taylor linearization variance 
estimators when the number of iterations is four or less. Raking ratio estimators have also 
been employed in the U.S. Current Population Survey (CPS). It may be noted that the 
method of adjusting cell counts to given marginal counts in a two-way table was 
originally proposed in the landmark paper by Deming and Stephan (1940). 
 
Unified approaches to calibration, based on minimizing a suitable distance measure 
between calibration weights and design weights subject to benchmark constraints, have 
attracted the attention of users due to their ability to accommodate arbitrary number of 
user-specified benchmark constraints, for example, calibration to the marginal counts of 
several post-stratification variables. Calibration software is also readily available, 
including GES (Statistics Canada), LIN WEIGHT (Statistics Netherlands), CALMAR 
(INSEE, France) and CLAN97 (Statistics Sweden).  
 
A chi-squared distance, iiisi i dwdq /)( 2−∑∈

, leads to the GREG estimator (5), where 

the x-vector corresponds to the user-specified benchmark constraints (BC) and )(swi  is 
denoted as iw  for simplicity (Huang and Fuller, 1978; Deville and Sarndal, 1992). 
However, the resulting calibration weights may not satisfy desirable range restrictions 
(RR), for example some weights may be negative or too large especially when the 
number of constraints is large and the variability of the design weights is large. Hwang 
and Fuller (1978) proposed a scaled modified chi-squared distance measure and obtained 
the calibration weights through an iterative solution that satisfies BC at each iteration. 
However, a solution that satisfies BC and RR may not exist. Another method, called 
shrinkage minimization (Singh and Mohl, 1996) has the same difficulty. Quadratic 
programming methods that minimize the chi-squared distance subject to both BC and RR 
have also been proposed (Hussain, 1969) but the feasible set of solutions satisfying both 
BC and RR can be empty. Alternative methods propose to change the distance function 
(Deville and Sarndal, 1992) or drop some of the BC (Bankier et al., 1992). For example, 
an information distance of the form })/log({ iiiiisi i dwdwwq +−∑∈

gives raking ratio 

estimators with non-negative weights iw , but some of the weights can be excessively 
large. “Ridge” weights obtained by minimizing a penalized chi-squared distance have 



also been proposed (Chambers, 1996), but no guarantee that either BC or RR are 
satisfied, although the weights are more stable than the GREG weights. Rao and Singh 
(1997) proposed a “ridge shrinkage” iterative method that ensures convergence for a 
specified number of iterations by using a built-in tolerance specification to relax some 
BC while satisfying RR. Chen et al. (2002) proposed a similar method.  
 
                                                           
 
GREG calibration weights have been used in the Canadian Labour Force Survey and 
more recently it has been extended to accommodate composite estimators that make use 
of sample information in previous months, as noted in Section 1 (Fuller and Rao, 2001; 
Gambino et al., 2001; Singh and Wu, 2001). GREG-type calibration estimators have also 
been used for the integration of two or more independent surveys from the same 
population. Such estimators ensure consistency between the surveys, in the sense that the 
estimators from the two surveys for common variables are identical, as well as 
benchmarking to known population totals (Renssen and Nieuwenbroek, 1997; Singh and 
Wu, 1996; Merkouris, 2004).  For the 2001 Canadian Census, Bankier (2003) studied 
calibration weights corresponding to the “optimal” linear regression estimator (section 
2.3) under stratified random sampling. He showed that “optimal” calibration method 
performed better than the GREG calibration, used in the previous census, in the sense of 
allowing more BC to be retained while at the same time allowing the calibration weights 
to be at least one. The “optimal” calibration weights can be obtained from GES software 
by including the known strata sizes in the BC and defining the tuning constant iq  
suitably. Note that the “optimal” calibration estimator also has desirable conditional 
design properties (section 2.4). Weighting for the 2001 Canadian census switched from 
projection GREG (used in the 1996 census) to “optimal” linear regression. 
 
Demnati and Rao (2004) derived Taylor linearization variance estimators for a general 
class of calibration estimators with weights )ˆ( λiii xFdw ′= , where the LaGrange 

multiplier λ̂ is determined by solving the calibration constraints. The choice 
aaF += 1)( gives GREG weights and aeaF =)(  leads to raking ratio weights. In the 

special case of GREG weights, the variance estimator reduces to )(gev given in section 
2.3.                                                                                                                                              
 
We refer the reader to the Waksberg award paper of Fuller (Fuller, 2002) for an excellent 
overview and appraisal of regression estimation in survey sampling, including calibration 
estimation. 
 
                   4. UNEQUAL PROBABILITY SAMPLING  
 
We have noted in Section 1 that PPS sampling of PSUs within strata in large-scale 
surveys was practically motivated by the desire to achieve approximately equal 
workloads. PPS sampling also achieves significant variance reduction by controlling on 
the variability arising from unequal PSU sizes without actually stratifying by size. PSUs 
are typically sampled without replacement such that the PSU inclusion probability, iπ , is 



proportional to PSU size measure ix . For example, systematic PPS sampling, with or 
without initial randomization of the PSU labels, is an inclusion probability proportional 
to size (IPPS) design (also called PSπ design) that has been used in many complex 
surveys, including the Canadian LFS. The estimator of a total associated with an IPPS 
design is the NHT estimator.  
                                                               
 
Development of suitable (IPPS, NHT) strategies raises theoretically challenging 
problems, including the evaluation of exact joint inclusion probabilities, ijπ , or accurate 
approximations to ijπ requiring only the individual iπ s, that are needed in getting 
unbiased or nearly unbiased variance estimator. My own 1961 Ph.D. thesis at Iowa State 
University addressed the latter problem. Several solutions, requiring sophisticated 
theoretical tools, have been published since then by talented mathematical statisticians. 
However, this theoretical work is often classified as “theory without application” because 
it is customary practice to treat the PSUs as if sampled with replacement that leads to 
great simplification. The variance estimator is simply obtained from the estimated PSU 
totals and in fact this assumption is the basis for re-sampling methods (Section 5). This 
variance estimator can lead to substantial over-estimation unless the overall PSU 
sampling fraction is small. The latter may be true in many large-scale surveys, In the 
following paragraphs, I will try to demonstrate that the theoretical work on (IPPS, NHT) 
strategies as well as some non-IPPS designs indeed have wide practical applicability. 
 
First, I will focus on (IPPS, NHT) strategies. In Sweden and some other countries in 
Europe, stratified single-stage sampling is often used because of the availability of list 
frames and IPPS designs are attract options, but sampling fractions are often large. For 
example, Rosen (1991) notes that Statistics Sweden’s Labour Force Barometer surveys 
some 100 different populations using systematic PPS sampling and that the sampling 
rates can be as high as 50% or even more. Aires and Rosen (2005) studied Pareto 

PSπ sampling for Swedish surveys. This method has attractive properties, including fixed 
sample size, simple sample selection, good estimation precision, consistent variance 
estimation regardless of sampling rates. It also allows sample coordination through 
permanent random numbers as in Poisson sampling, but the latter method leads to 
variable sample size. Because of these merits, Pareto PSπ  has been implemented in a 
number of Statistics Sweden surveys, notably in price index surveys. The method of Rao-
Sampford (see Brewer and Hanif, 1982, p.28) leads to exact IPPS designs and non-
negative unbiased variance estimators for arbitrary fixed sample sizes. It has been 
implemented in the new version of SAS. Stehman and Overton (1994) note that variable 
probability structure arises naturally in environmental surveys rather than being selected 
just for enhanced efficiency, and that the siπ  are only known for the units i in the sample 
s . By treating the sample design as randomized systematic PPS, Stehman and Overton 
obtained approximations to the ijπ s that depend only sii ∈,π , unlike the original 
approximations of Hartley and Rao (1962) that require the sum of squares of all the iπ s 
in the population. In their applications, the sampling rates are substantial to warrant the 
evaluation of the joint inclusion probabilities.  



 
I will now turn to non-IPPS designs using estimators different from the NHT estimator 
that ensure zero variance when y is exactly proportional to x . The random group method 
of Rao, Hartley and Cochran (1962) permits a simple non-negative variance estimator for 
any fixed sample size and yet compares favourably to (IPPS, NHT) strategies in terms of  
                                                              
 
efficiency and always more efficient than PPS with replacement strategy. Schabenberger 
and Gregoire (1994) noted that (IPPS, NHT) strategies have not enjoyed much 
application in forestry because of difficulty in implementation and recommended the 
Rao-Hartley-Cochran strategy in view of its remarkable simplicity and good efficiency 
properties. It is interesting to note that this strategy has been used in the Canadian LFS on 
the basis of its suitability for switching to new size measures, using the Keyfitz method 
within each random group. On the other hand, (IPPS, NHT) strategies are not readily 
suitable for this purpose. I understand that the Rao-Hartley-Cochran strategy is often used 
in audit sampling and other accounting applications.  
 
Murthy (1957) used a non-IPPS design based on drawing successive units with 
probabilities )1/(),1/(, jikiji pppppp −−− and so on, and the following estimator: 
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where )|( isp  is the conditional probability of obtaining the sample s  given that unit i  
was selected first. He also provided a non-negative variance estimator requiring the 
conditional probabilities, ),|( jisp , of obtaining s  given i and j are selected in the first 
two draws. This method did not receive practical attention for several years due to 
computational complexity, but more recently it has been applied in unexpected areas, 
including oil discovery ( Andreatta and Kaufman, 1986) and sequential sampling 
including inverse sampling and some adaptive sampling schemes (Salehi and Seber, 
1997). It may be noted that adaptive sampling has received a lot of attention in recent 
years because of its potential as an efficient sampling method for estimating totals or 
means of rare populations (Thompson and Seber, 1996). In the oil discovery application, 
successive sampling scheme is a characterization of discovery and the order in which 
fields are discovered is governed by sampling proportional to field size and without 
replacement, following the industry folklore “on the average, the big fields are found 
first”. Here Yyp ii /= and the total oil reserve Y is assumed to be known from geological 
considerations. In this application, geologists are interested in the size distribution of all 
fields in the basin and when a basin is partially explored the sample is composed of 
magnitudes iy  of discovered deposits. The size distribution function )(aF can be 
estimated by using Murthy’s estimator (9) with iy  replaced by the indicator variable 

)( ayI i ≤ . The computation of )|( isp  and )(sp , however, is formidable even for 
moderate sample sizes. To overcome this computational difficulty, Andreatta and 
Kaufman (1986) used integral representations of these quantities to develop asymptotic 
expansions of Murthy’s estimator, the first few terms of which are easily computable. 



Similarly, they obtain computable approximations to Murthy’s variance estimator. Note 
that the NHT estimator of )(aF is not feasible here because the inclusion probabilities are 
functions of all the −y values in the population.  
 
 
                                                                
 
The above discussion is intended to demonstrate that a particular theory can have 
applications in diverse practical areas even if it is not needed in a particular situation, 
such as large-scale surveys with negligible first stage sampling fractions. Also it shows 
that unequal probability sampling designs play a vital role in survey sampling, despite 
Sarndal’s (1996) contention that simpler designs, such as stratified SRS and stratified 
Bernoulli sampling, together with GREG estimators should replace strategies based on 
unequal probability sampling without replacement.  
 
5. ANALYSIS OF SURVEY DATA AND RESAMPLING METHODS 
 
Standard methods of data analysis are generally based on the assumption of simple 
random sampling, although some software packages do take account of survey weights 
and provide correct point estimates. However, application of standard methods to survey 
data, ignoring the design effect due to clustering and unequal probabilities of selection, 
can lead to erroneous inferences even for large samples. In particular, standard errors of 
parameter estimates and associated confidence intervals can be seriously under-stated, 
type I error rates of tests of hypotheses can be much bigger than the nominal levels, and 
standard model diagnostics, such as residual analysis to detect model deviations, are also 
affected.  Kish and Frankel (1974) and others drew attention to some of those problems 
and emphasized the need for new methods that take proper account of the complexity of 
data derived from large-scale surveys. Fuller (1975) developed asymptotically valid 
methods for linear regression analysis, based on Taylor linearization variance estimators. 
Rapid progress has been made over the past 20 years or so in developing suitable 
methods. Re-sampling methods play a vital role in developing methods that take account 
of survey design in the analysis of data. All one needs is a data file containing the 
observed data, the final survey weights and the corresponding final weights for each 
pseudo-replicate generated by the re-sampling method. Software packages that take 
account of survey weights in the point estimation of parameters of interest can then be 
used to calculate the correct estimators and standard errors, as demonstrated below. As a 
result, re-sampling methods of inference have attracted the attention of users as they can 
perform the analyses themselves very easily using standard software packages. However, 
releasing public-use data files with replicate weights can lead to confidentiality issues, 
such as the identification of clusters from replicate weights. In fact, at present a challenge 
to theory is to develop suitable methods that can preserve confidentiality of the data. Lu, 
Brick and Sitter (2004) proposed grouping strata and then form pseudo-replicates using 
the combined strata for variance estimation, thus limiting the risk of cluster identification 
from the resulting public-use data file. A method of inverse sampling to undo the 
complex survey data structure and yet provide protection against revealing cluster labels 
(Hinkins, Oh and Scheuren, 1997; Rao, Scott and Benhin, 2003) appears promising, but  



 
 
 
 
 
                                                              
 
 
much work on inverse sampling methods remains to be done before it becomes attractive 
to the user.  
 
Rao and Scott (1981, 84) made a systematic study of the impact of survey design effect 
on standard chi-squared and likelihood ratio tests associated with a multi-way table of 
estimated counts of proportions. They showed that the test statistic is asymptotically 
distributed as a weighted sum of independent 2

1χ variables, where the weights are the 
eigenvalues of a “generalized design effects” matrix. This general result shows that the 
survey design can have a substantial impact on the type I error rate. Rao and Scott  
proposed simple first-order corrections to the standard chi-squared statistics that can be 
computed from published tables that include estimates of design effects for cell estimates 
and their marginal totals, thus facilitating secondary analyses from published tables. They 
also derived second order corrections that are more accurate, but require the knowledge 
of a full estimated covariance matrix of the cell estimates, as in the case of familiar Wald 
tests. However, Wald tests can become highly unstable as the number of cells in a mult-
way table increases and the number of sample clusters decrease, leading to unacceptably 
high type I error rates compared to the nominal levels, unlike the Rao-Scott second order 
corrections (Thomas and Rao, 1987). The first and second order corrections are now 
known as Rao-Scott corrections and are given as default options in the new version of 
SAS. Roberts, Rao and Kumar (1987) developed Rao-Scott type corrections to tests for 
logistic regression analysis of estimated cell proportions associated with a binary 
response variable. They applied the methods to a two-way table of employment rates 
from the Canadian LFS, 1977 obtained by cross-classifying age and education groups. 
Bellhouse and Rao (2002) extended the work of Roberts et al. to the analysis of domain 
means using generalized linear models. They applied the methods to domain means from 
a Fiji Fertility Survey cross-classified by education and years since the woman’s first 
marriage, where a domain mean is the mean number of children even born for women of 
Indian race belonging to the domain.   
 
Re-sampling methods in the context of large -scale surveys using stratified multi-stage 
designs have been studied extensively. For inference purposes, the sample PSUs are 
treated as if drawn with replacement within strata. This leads to over-estimation of 
variances but it is small if the overall PSU sampling fraction is negligible. Let θ̂  be the 
survey-weighted estimator of a “census” parameter of interest computed from the final 
weights iw , and let the corresponding weights for each pseudo-replicate r  generated by 
the re-sampling method be denoted by )(r

iw . The estimator based on the pseudo-replicate 



weights )(r
iw  is denoted as )(ˆ rθ  for each Rr ,...,1= . Then a re-sampling variance 

estimator of θ̂  is of the form 
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for specified coefficients rc  in (10) determined by the re-sampling method. 
 
Commonly used re-sampling methods include (a) delete-cluster (delete-PSU) jackknife, 
(b) balanced repeated replication (BRR) particularly for 2=hn  PSUs in each stratum h  
and (c) Rao-Wu (1988) bootstrap. Jackknife pseudo-replicates are obtained by deleting  
each sample cluster )(hjr = in turn, leading to jackknife design weights )(r

id  taking the 
value 0 if the sample unit i  is in the deleted cluster, )1/( −hih ndn if i  is not in the 
deleted cluster but in the same stratum, and unchanged if i  is in a different stratum. The 
jackknife design weights are then adjusted for unit non-response and post-stratification, 
leading to the final jackknife weights )(r

iw . The jackknife variance estimator is given by 
(10) with hhr nnc /)1( −=  when ).(hjr =  The delete-cluster jackknife method has two 
possible disadvantages: (1) When the total number of sampled PSUs, ∑= hnn , is very 
large, R is also very large because .nR = (2) It is not known if the delete-jackknife 
variance estimator is design-consistent in the case of non-smooth estimators θ̂ , for 
example the survey-weighted estimator of the median. For simple random sampling, the 
jackknife is known to be inconsistent for the median or other quantiles. It would be 
theoretically challenging and practically relevant to find conditions for the consistency of 
delete-cluster jackknife variance estimator of a non-smooth estimator θ̂ .  
 
BRR can handle non-smooth θ̂ , but it is readily applicable only for the important special 
case of 2=hn  PSUs per stratum. A minimal set of balanced half-samples can be 
constructed from an RR×  Hadamard matrix by selecting H columns, excluding the 
column of 1+ ’s, where 41 +≤≤+ HRH  (McCarthy, 1969). The BRR design weights 

)(r
id  equal id2  or 0  according as whether or not i is in the half-sample. A modified 

BRR, due to Bob Fay, uses all the sampled units in each replicate unlike the BRR by 
defining the replicate design weights as i

r
i dd )1()()( εε +=  or id)1( ε−  according as 

whether or not i  is in the half-sample, where 10 << ε ; a good choice of ε  is 2
1 . The 

modified BRR weights are then adjusted for non-response and post-stratification to get 
the final weights )()( εr

iw and the estimator )(ˆ )( εθ r . The modified BRR variance estimator 

is given by (10) divided by 2ε  and )(ˆ rθ  replaced by )(ˆ )( εθ r , see Rao and Shao (1999). 
The modified BRR is particularly useful under independent re-imputation for missing 
item responses in each replicate because it can use the donors in the full sample to impute 
unlike the BRR that uses the donors only in the half-sample.  



 
The Rao-Wu bootstrap is valid for arbitrary )2(≥hn  unlike the BRR, and it can also 

handle non-smooth .θ̂  Each bootstrap replicate is constructed by drawing a simple 
random sample of PSUs of size 1−hn  from the hn  sample clusters, independently across 
the strata. The bootstrap design weights )(r

id are given by i
r

hihh dmnn )()]1/([ −  if i  is in  
                                                                
 
stratum h and replicate r , where )(r

him  is the number of times sampled PSU )(hi is 
selected, 1)( −=∑ hi

r
hi nm . The weights )(r

id are then adjusted for unit non-response and – 

post-stratification to get the final bootstrap weights and the estimator )(ˆ rθ . Typically, 
500=R  bootstrap replicates are used in the bootstrap variance estimator (10). Several 

recent surveys at Statistics Canada have adopted the bootstrap method for variance 
estimation because of the flexibility in the choice of R and wider applicability. Users of 
Statistics Canada micro survey data files seem to be very happy with the bootstrap 
method for analysis of data. 
 
Early work on the jackknife and the BRR was largely empirical (e.g., Kish and Frankel, 
1974).  Krewski and Rao (1981) formulated a formal asymptotic framework appropriate 
for stratified multi-stage sampling and established design consistency of the jackknife 
and BRR variance estimators when θ̂  can be expressed as a smooth function of estimated 
means. Several extensions of this basic work have been reported in the recent literature; 
see the book by Shao and Tu (1995, Chapter 6). Theoretical support for re-sampling 
methods is essential for their use in practice. 
 
In the above discussion, I simply denoted θ̂  as the estimator of a “census” parameter. 
Typically, the census parameter Cθ  is motivated by an underlying super-population 
model and the census is regarded as a sample generated by the model, leading to census 
estimating equations whose solution is Cθ . The census estimating functions )(θCU are 
simply population totals of functions )(θiu with zero expectation under the assumed 
model, and the census estimating equations are given by 0)( =θCU . Kish and Frankel 
(1974) argued that the census parameter makes sense even if the model is not correctly 
specified. For example, in the case of linear regression, the census regression coefficient 
could explain how much of the relationship between the response variable and the 
independent variables is accounted by a linear regression model. Noting that the census 
estimating functions are simply population totals, survey weighted estimators )(ˆ θU  from 
the full sample and )(ˆ )( θrU  from each pseudo-replicate are obtained. The solutions of 
corresponding estimating equations 0)(ˆ =θU and 0)(ˆ )( =θrU give θ̂  and )(ˆ rθ  
respectively. Note that the re-sampling variance estimators are designed to estimate the 
variance of θ̂  as an estimator of the census parameters but not the model parameters. 
Under certain conditions, the difference can be ignored but in general we have a two-
phase sampling situation, where the census is the first phase sample from the super-



population and the sample is a probability sample from the census population. Recently, 
some useful work has been done on two-phase variance estimation when the model 
parameters are the target parameters (Graubard and Korn, 2002; Rubin-Bleuer and 
Schiopu Kratina, 2004), but more work is needed to address the difficulty in specifying 
the covariance structure of the model errors.  
 
                                                               
 
 
A difficulty with the bootstrap is that the solution )(ˆ rθ  may not exist for some bootstrap 
replicates r  (Binder, Kovacevic and Roberts, 2004). Rao and Tausi (2004) used 
estimating function (EF) bootstrap method that avoids the difficulty. In this method, we  
solve )ˆ(ˆ)(ˆ )( θθ rUU =  for θ  using only one-step of the Newton-Raphson iteration with θ̂                               
as the starting value. The resulting estimator )(~ rθ  is then used in (10) to get the EF 
bootstrap variance estimator of θ̂  which can be readily implemented from the data file 
providing replicate weights, using slight modifications of any software package that 
accounts for survey weights. It is interesting to note that the EF bootstrap variance 
estimator is equivalent to a Taylor linearization sandwich variance estimator that uses the 
bootstrap variance estimator of )(ˆ θU  and the inverse of the observed information matrix 
(derivative of )(ˆ θU− ), both evaluated at θθ ˆ=  (Binder, Kovacevic and Roberts, 2004).  
 
Pfeffermann (1993) discussed the role of design weights in the analysis of survey data. If 
the population model holds for the sample (i.e., if there is no sample selection bias), then 
model-based unweighted estimators will be more efficient than the weighted estimators 
and lead to valid inferences, especially for data with smaller sample sizes and larger 
variation in the weights. However, for typical data from large-scale surveys, the survey 
design is informative and the population model may not hold for the sample. As a result, 
the model-based estimators can be seriously biased and inferences can be erroneous.  
Pfeffermann and his colleagues initiated a new approach to inference under informative 
sampling; see Pfeffermann and Sverchkov (2003) for recent developments. This approach 
seems to provide more efficient inferences compared to the survey weighted approach, 
and it certainly deserves the attention of users of survey data. However, much work 
remains to be done, especially in handling data based on multi-stage sampling.  
 
 
 
                        6. SMALL AREA ESTIMATON 
 
 
Previous sections of this paper have focussed on traditional methods that use direct 
domain estimators based on domain-specific sample observations along with auxiliary 
population information. Such methods, however, may not provide reliable inferences 
when the domain sample sizes are very small or even zero for some domains. Domains or 
sub-populations with small or zero sample sizes are called small areas in the literature. 



Demand for reliable small area statistics has greatly increased in recent years because of 
the growing use of small area statistics in formulating policies and programs, allocation 
of funds and regional planing. Clearly, it is seldom possible to have a large enough 
overall sample size to support reliable direct estimates for all domains of interest. Also, in 
practice, it is not possible to anticipate all uses of survey data and “the client will always 
require more than is specified at the design stage (Fuller, 1999, p.344). In making  
                                                             
 
estimates for small areas with adequate level of precision, it is often necessary to 
use“indirect” estimators that borrow information from related domains through auxiliary  
information, such as census and current administrative data, to increase the “effective” 
sample size within the small areas. 
 
 It is now generally recognized that explicit models linking the small areas through 
auxiliary information and accounting for residual between area variation through random 
small area effects are needed in developing indirect estimators. Success of such model-
based methods heavily depends on the availability of good auxiliary information and 
thorough validation of models through internal and external evaluations. Many of the 
methods used in mainstream statistical theory involving models with random effects are 
relevant to small area estimation, including empirical best (or Bayes), empirical best 
linear unbiased prediction and hierarchical Bayes based on prior distributions on the 
model parameters. A comprehensive account of such methods is given in my 2003 Wiley 
book (Rao, 2003). Practical relevance and theoretical interest of small area estimation 
have attracted the attention of many researchers, leading to important advances in point 
estimation as well as measuring the variability of the estimators. The “new” methods 
have been applied successfully worldwide to a variety of small area problems. . Model-
based methods have been recently used to produce current county and school district 
estimates of poor school-age children in U.S.A. Based on the model-based estimates, the 
U.S. Department of Education allocates annually over $7 billion of funds to counties. The 
allocated funds support compensatory education programs to meet the needs of 
educationally disadvantaged children. We refer to Rao (2003, example 7.1.2) for details 
of this application. In the United Kingdom the Office of National Statistics established a 
Small Area Estimation Project to develop model-based estimates at the level of political 
wards (roughly 2000 households). The practice and estimation methods of U.S. federal 
statistical programs that use indirect estimators to produce published estimates are 
documented in Schaible (1996). 
 
Small area estimation is a striking example of the interplay between theory and practice. 
Theoretical advances are impressive, but many practical issues need further attention of 
theory. Such issues include: (a) Benchmarking model-based estimators to agree with 
reliable direct estimators at large area levels. (b) Developing and validating suitable 
linking models and addressing issues such as errors in variables, incorrect specification of 
the linking model and omitted variables. (c) Development of methods that satisfy 
multiple goals: good area-specific estimates, good ranks and a good histogram of small 
areas.  
 



 
   7. SOME THEORY DESERVING ATTENTION OF PRACTICE 
 
                     
In this section, I will briefly mention some examples of important theory that exists but 
not widely used in practice.  
 
                                                              
 
7.1. Empirical Likelihood Inference  
 
Traditional sampling theory largely focused on point estimation and associated standard 
errors, appealing to normal approximations for confidence intervals on parameters of 
interest. In the mainstream statistics, the empirical likelihood (EL) approach (Owen 
1988) has attracted a lot of attention due to several desirable properties. It provides a non-
parametric likelihood, leading to EL ratio confidence intervals similar to the parametric 
likelihood ratio intervals. The shape and orientation of EL intervals are determined 
entirely by the data, and the intervals are range preserving and transformation respecting, 
and are particularly useful in providing balanced tail error rates, unlike the symmetric 
normal theory intervals. As noted in Section 1.1, the EL approach was in fact first 
introduced in the sample survey context by Hartley and Rao (1968), but their focus was 
on inferential issues related to point estimation. Chen, Chen and Rao (2003) obtained EL 
intervals on the population mean under simple random and stratified random sampling for 
populations containing many zeros. Such populations are encountered in audit sampling, 
where y  denotes the amount of money owed to the government and the mean Y  is the 
average amount of excessive claims. Previous work on audit sampling used parametric 
likelihood ratio intervals based on parametric mixture distributions for the variable y . 
Such intervals perform better than the standard normal theory intervals, but EL intervals 
perform better under deviations from the assumed mixture model, by providing non-
coverage rate below the lower bound closer to the nominal error rate and also larger 
lower bound. For general designs, Wu and Rao (2004) used a pseudo-empirical 
likelihood (Chen and Sitter, 1999) to obtain adjusted pseudo-EL intervals on the mean 
and the distribution function that account for the design features, and showed that the 
intervals provide more balanced tail error rates than the normal theory intervals. The EL 
method also provides a systematic approach to calibration estimation and integration of 
surveys. We refer the reader to the review papers by Rao (2004) and Wu and Rao (2005). 
Further refinements and extensions remain to be done, particularly on the pseudo- 
empirical likelihood, but the EL theory in the survey context deserves the attention of 
practice.  
 
7.2 Exploratory Analyses of Survey Data 
 
In Section 5 we discussed methods for confirmatory analysis of survey data taking design 
into account, such as point estimation of model (or census) parameters and associated 
standard errors and formal tests of hypotheses. Graphical displays and exploratory data 
analyses of survey data are also very useful. Such methods have been extensively 



developed in the mainstream literature. Only recently, some extensions of these modern 
methods are reported in the survey literature and deserve the attention of practice. I will 
briefly mention some of those developments. First, non-parametric kernel density 
estimates are commonly used to display the shape of a data set without relying on 
parametric models. They can also be used to compare different sub-populations.  
                                                             
 
                                                           
 
Bellhouse and Stafford (1999) provided kernel density estimators that take account of the 
surey design and studied their properties and applied the methods to data from the  
Ontario Health Survey. Buskirk and Lohr (2005) studied asymptotic and finite sample 
properties of kernel density estimators and obtained confidence bands. They applied the 
methods to data from the US National Crime Victimization Survey and the US National 
Health and Nutrition Examination Survey.   
 
Secondly, Bellhouse and Stafford (2001) developed local polynomial regression methods, 
taking design into account, that can be used to study the relationship between a response 
variable and predictor variables, without making strong parametric model assumptions. 
The resulting graphical displays are useful in understanding the relationships and also for 
comparing different sub-populations. Bellhouse and Stafford (2001) illustrated local 
polynomial regression on the Ontario Health Survey data; for example, the relationship 
between body mass index of females and age. Bellhouse, Chipman and Stafford (200-) 
studied additive models for survey data via penalized least squares method to handle 
more than one predictor variable, and illustrated the methods on the Ontario Health 
Survey data. This approach has many advantages in terms of graphical display, 
estimation, testing and selection of “smoothing” parameters for fitting the models.  
 
7.3 Measurement Errors 
 
Typically, measurement errors are assumed to be additive with zero means. As a result, 
usual estimators of total and means remain unbiased or consistent. However, this nice 
feature may not hold for more complex parameters such as distribution function, 
quantiles and regression coefficients. In the latter case, usual estimators will be biased, 
even for large samples, and hence can lead to erroneous inferences (Fuller, 1995). It is 
possible to obtain bias-adjusted estimators if estimates of measurement error variances 
are available. The latter may be obtained by allocating resources at the design stage to 
make repeated observations on a sub-sample. Fuller (1975, 1995) has been a champion of 
proper methods in the presence of measurement errors and the bias-adjusted methods 
deserve the attention of practice. 
 
Hartley and Rao (1968) and Hartley and Biemer (1981) provided interviewer and coder 
assignment conditions that permit the estimation of sampling and response variances for 
the mean or total from current surveys. Unfortunately, current surveys are often not 
designed to satisfy those conditions and even if they do the required information on 
interviewer and coder assignements is seldom available at the estimation stage.  



 
Linear components of variance models are often used to estimate interviewer variability. 
Such models are appropriate for continuous response but not for binary responses. The 
linear model approach for binary responses can result in underestimating the intra-
interviewer correlations. Scott and Davis (2001) proposed multi-level models for binary 
responses to estimate interviewer variability. Given that responses are often binary in  
 
 
                                                             
 
many surveys, practice should pay attention to such models for proper analyses of survey 
data with binary responses.  
 
7.4 Imputation for Missing Survey Data 
 
Imputation is commonly used in practice to fill in missing item values. It ensures that the 
results obtained from different analyses of the completed data set are consistent with one 
another by using the same survey weight for all items. Marginal imputation methods, 
such as ratio, nearest neighbour and random donor within imputation classes are used by 
many statistical agencies. Unfortunately, the imputed values are often treated as if they 
were true values and then compute estimates and variance estimates. The imputed point 
estimates of marginal parameters are generally valid under an assumed response 
mechanism or imputation model. But the “naïve” variance estimators can lead to 
erroneous inferences even for large samples; in particular, serious underestimation of the 
variance of the imputed estimator because the additional variability due to estimating the 
missing values is not taken into account. Advocates of Rubin’s (1987) multiple 
imputation claim that the multiple imputation variance estimator can fix this problem 
because a between imputed estimators sum of squares is added to the average of naïve 
variance estimators resulting from the multiple imputations. Unfortunately, there are 
difficulties with multiple imputation variance estimators, as discussed by Kott (1995), 
Fay (1996), Binder and Sun (1996), Wang and Robins (1998), Kim, Brick and Fuller 
(2004) and others. Moreover, single imputation is often preferred due to operational and 
cost considerations. Some impressive advances have been made in recent years on 
making efficient and valid inferences from singly imputed data sets. We refer the reader 
to review papers by Shao (2002) and Rao (2000, 2005) for methods of variance 
estimation under single imputation that deserve the attention of practice. But much 
remains to be done. 
 
  
                                      8. CONCLUDING REMARKS 
 
Joe Waksberg’s contributions to sample survey theory and methods truly reflect the 
interplay between theory and practice. Working at the US Census Bureau and later at 
Westat, he faced real practical problems and often produced beautiful theory to solve 
them. For example, his landmark paper (Waksberg, 1978) produced an ingenious method 
for random digit dialing that significantly reduced the survey costs compared to dialing 



numbers completely at random. He provided sound theory to demonstrate its efficiency. I 
feel greatly honoured to receive the 2004 Waksberg award for survey methodology.  
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